

EXPERIENCE

.OUR IDENTITY

CUSTOMIZED SOLUTIONS FOR 45 YEARS.

KTK KLIMATECHNIK, with its deep background of 45 years of experience, is a key worldwide brand of Air Conditioning and Process Cooling business, characterized by skilled know-how, flexibility and innovation.

The strong point of KTK KLIMATECHNIK is indeed the possibility to offer focused, custom responses to highly specific needs, especially in large systems.

Combining experience with advanced technology, innovative research and development solutions, KTK KLIMATECHNIK designs, manufactures and customizes a complete range of machines, especially dedicated to the industrial process and to the air conditioning of commercial and industrial environments.

.QUALITY .INNOVATION .ENVIRONMENT

.QUALITY

A FULLY CERTIFIED SYSTEM.

We believe in the Customer satisfaction and pursue this objective through the development of solutions to ensure the best performance over time and the maximum reliability of our products. The internationally recognized certifications can be summarized as follows:

- CE. It certifies that every unit leaving our production lines is built in accordance with the standards required by the European Union.
- P.E.D. Certification for pressurised fluids which guarantees the correct implementation of cooling and hydraulic circuits in units with compressors.
- UNI EN ISO 9001. KTK KLIMATECHNIK was the first Italian Company in the sector to adhere to the programme in 1999, proving the special attention dedicated to the correct management of the industrial process.
- EUROVENT. Attesting the reliability of Company data on product performance, it is a guarantee of the actual quality of KTK KLIMATECHNIK products and their characteristics.

KTK KLIMATECHNIK product ranges are compliant to ErP European Regulations.

- **ErP 2018 SCOP.** The EU Regulation n. 813/2013 fixing precise efficiency standards for heat pump units.
- **ErP 2021 SEER.** A wide range of units for comfort cooling application reaches the seasonal energy efficiency standards required from 2021 (EU Regulation n°2016/2281).
- **ErP 2021 SEPR.** A wide range of units for process cooling application reaches the seasonal energy efficiency standards required from 2021 (EU Regulation n°2016/2281).

TOTAL QUALITY: THE HEART OF OUR PHILOSOPHY.

The Company production, spreading over 4 European production plants, is divided between modern assembly lines and work islands.

In both cases, the whole production process is subject to thorough checks and controls, both at the end and at intermediate steps. Each unit must go through strict testing, simulating operational conditions on the customer's site even in the most demanding situations. Pressure, temperature, sound level, vibrations: every-thing is checked to make sure it complies with set parameters. The Service Network, relying on very skilled Professionals, is available to carry out unit's start-up on Customer's premises to ensure the perfect unit's functioning.

G.I. INDUSTRIAL HOLDING S.p.A. participates in the ECC programme for LCP-HP, FCU and AHU. Check on-going validity of certificate: www.certification.com or www.certifiash.com

.INNOVATION

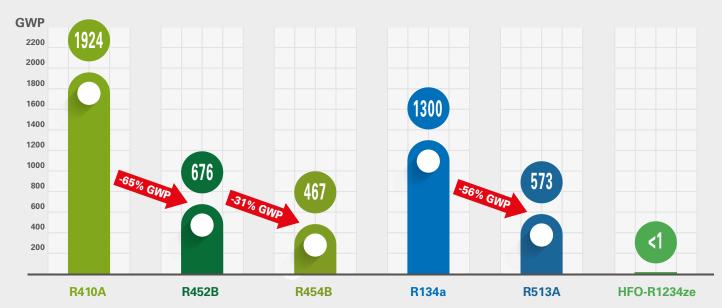
THE HIGHEST EFFICIENCY.

The highest today's challenge in HVAC business is ensuring maximum comfort with the lowest energy consumption. Thanks to its continuous research in new technical solutions, KTK KLIMATECHNIK offers its newest and widest high efficiency range characterized by A CLASS energy efficiency with the highest SEER/SEPR/SCOP, including models with Rotary, Scroll, Screw and Turbocor compressors.

.ENVIRONMENT

LOW GWP REFRIGERANT: HFO-R1234ze, R452B, R454B AND R513A.

In a market more and more concerned with environmental issues, KTK KLIMATECHNIK is able to provide the widest offer of liquid Chillers operating with low GWP refrigerants. The latest generation refrigerant **HFO-R1234ze**, with GWP<1 (Global Warming Potential), is the most environmentally sustainable refrigerant on the market to meet even the strictest international environmental regulations. KTK KLIMATECHNIK provides two ranges of Aircooled or Watercooled liquid Chillers both with Turbocor or Screw compressors specially designed for HFO-R1234ze refrigerant.


Moreover, the units in the catalogue with traditional R410A and R134a refrigerants can be supplied, on request, with low GWP alternatives, respectively **R452B**, **R454B** and **R513A**.

.THEGROUP

.THE STRENGHT OF A GLOBAL GROUP

A MULTI-BRAND GROUP FOR THE WIDEST PRODUCT RANGE.

Created from the integration of industrial leading Companies operating from 45 years in various businesses of thermo-technical industry, G.I. INDUSTRIAL HOLDING is now a Global Group manufacturing and marketing a complete range of solutions for Comfort and Industrial Cooling: from Air Conditioning and Air Treatment of service and industrial environments, to Close Control systems, to Industrial Process Cooling. G.I. INDUSTRIAL HOLDING can claim a wide knowledge of the HVAC field due to its long history and Group structure, where each branch has a deep know-how and a focused specialization.

CLINT brand is focused on the segment of liquid Chillers, Packaged Roof Top units and Fan Coil units.

KTK KLIMATECHNIK is the European top level brand focused on applications for Industrial Process Cooling and special Air Conditioning systems.

MONTAIR is the trademark dedicated to cooling systems for Data Centres and Telecom Applications.

NOVAIR is a leading brand in the AirTreatment and Ventilation sectors.

.THE GROUP STRUCTURE

G.I. INDUSTRIAL HOLDING

The Company production is spread over 4 manufacturing plants in Italy and Hungary. The International markets are supported by 4 Sales Offices based in Italy, Russia, United Arab Emirates and Malaysia and a network of over 70 worldwide Distributors.

The new **G.I. HOLDING Headquarters** are located on a new facility in Latisana (Italy) with a 1.500 m² **Showroom** for exhibition of units manufactured on all the Group's plants and the **Cooling Academy**: a training room equipped for technical coaching of consultants, business professionals, engineers, designers and contractors, with rooms for units' functioning simulation.

G.I. INDUSTRIAL HOLDING is a Company of the multinational **G.I. HOLDING Group**, which signed in 2017 a Strategic Collaboration Agreement with the multinational **FUJITSU GENERAL LIMITED**, for the joint development of dedicated product ranges of residential and commercial air conditioners.

Sales Offices:

- Latisana ITALY. Group Headquarters, Europe and North & South Africa Regional Office.
- Moscow RUSSIA. Russia & other C.I.S. Countries Regional Office.
- Dubai UNITED ARAB EMIRATES (G.I. MIDDLE EAST Fze). Middle-East & Central Africa Regional Office.
- Klang MALAYSIA (G.I. INDUSTRIAL ASIA HOLDING Sdn Bhd). Asia Pacific Regional Office.

Manufacturing facilities:

- Latisana ITALY. Small & medium liquid Chillers Manufacturing Plant.
- Rivignano Teor ITALY. Large liquid Chillers Manufacturing Plant.
- Piove di Sacco ITALY. Close Control Business Unit and Manufacturing Plant.
- Biatorbágy HUNGARY (GIMEK Zrt). Packaged Roof Top units, Air Handling Units, Dry-Coolers and Fan Coil units Manufacturing Plant.

Rivignano Teor - ITALY. Production Plant.

Piove di Sacco - ITALY. Close Control Business Unit and Production Plant.

Biatorbágy – HUNGARY (GIMEK Zrt). Production Plant.

.EFFICIENCY AND PERFORMANCE TESTS

CLIMATIC CHAMBER

In Rivignano Teor (Italy), in addition to the production plant for large Liquid Chillers, is located the newly born Climatic Chamber that allows the Company to perform witness tests in the presence of the Customer to prove the perfect functionality and performance of its Units under a huge variety of operating conditions.

This allows a wide array of tests that can be carried out from -20°C to +50°C outdoor air temperature.

G.I. INDUSTRIAL HOLDING Climatic Chamber

.REFERENCES

DEDICATED SOLUTIONS FOR DIFFERENT APPLICATIONS.

SHOPPING MALLS, BUSINESS CENTRES, SHOWROOMS & LEISURE

SCHULTHEISS QUARTIER Shopping Mall & Business Centre, Berlin, Germany

AXEL SPRINGER VERLAG Business Centre, Berlin, Germany

BÜROGEBÄUDE DB LISTER DREIECK Business Centre, Hannover, Germany

GALERIA KAUFHOF Shopping Mall, Hannover, Germany KARSTADT OBERPOLLINGER Shopping Mall, Munchen, Germany

CITY GATE BREMEN Shopping Mall & Business Centre, Bremen, Germany

KEPLER-QUARTIER Residential & Business Centre, Mannheim, Germany

MÖMAX Furniture Shopping Mall, Mannheim, Germany DASA Working World Exhibition, Dortmund, Germany LEBERSTRAßE 20 Business Centre, Wien, Austria MERCEDES WITTWAR KONRAD Car Showroom, Graz, Austria

IMPULSZENTRUM Business Centre, Graz, Austria MACDUFF Aquarium, Macduff, UK ARUNDEL Great Court, London, UK

OFFICE BUILDINGS & PLANTS

ROBERT BOSCH Automotive Components, Reutlingen & Salzgitter, Germany

DAIMLER MERCEDES-BENZ R&D Centre, Ulm, Germany VOLKSWAGEN Emden Halle 18, Emden, Germany MICHELIN Tires Plant, Karlsruhe, Germany

SAP Headquarters & Service Centre, Walldorf & St. Leon, Germany SWR TELEVISION Broadcasting Centre, Baden-Baden, Germany TÜV SÜD Quality Certification Institute, Mannheim, Germany WMF Tableware, Geislingen, Germany

SWISS PRIME PACK Plastic Packaging, Niederuzwil, Switzerland SWISSCOM Offices, Berna, Switzerland

ROLEX Headquarters, Genève, Switzerland

FUNDERMAX Furniture Plant, Wiener Neudorf, Austria ROCHE DIAGNOSTICS Offices, Graz, Austria

LENZING FIBERS Chemical Company, Heiligenkreuz im

Lafnitztal, Austria

CHAMBER OF LABOUR, Villach, Austria BÖHLER WELDING, Kapfenberg, Austria

TONSTUDIO SUNSHINE MUSIC Recording Studio, Wien, Austria HÜBL HAUSTECHNIK Building Design, Graz, Austria

LUNAR FREEZING & COLD STORAGE, Aberdeen, UK ADIENT COMPONENTS, Rockenhausen, Germany

Discover all our references on: www.ktk.it

SCHOOLS AND UNIVERSITIES

GEORG-AUGUST GÖTTINGEN University, Göttingen, Germany KIT University - KARLSRUHER INSTITUT FÜR TECHNOLOGIE, Karlsruhe, Germany

AACHEN University - CENTRE FOR WIND POWER DRIVES, Aachen, Germany

ZURICH University, Zurich, Switzerland

HOSPITALS, HOTELS & RESIDENTIAL

KIT University Campus - KARLSRUHER INSTITUT FÜR TECHNOLOGIE Campus Nord, Eggenstein-Leopoldshafen, Germany

KLINIKUM LANDAU - Südliche Weinstraße Hospital, Landau, Germany

MOVENPICK REGENSDORF Hotel, Zurich, Switzerland LAINZ Hospital, Wien, Austria

ST CHARLES Hospital, London, UK

INDUSTRIAL PROCESS COOLING, DATA CENTRES AND LABORATORIES

FUCHS LUBRITECH GmbH Chemical, Kaiserslautern, Germany BISCHOF + KLEIN Plastic Packaging Company, Lengerich, Germany

ROTTENDORF Pharmaceutical, Ennigerloh, Germany WAYAND Plastic Company, Idar-Oberstein, Germany ZAG ZYKLOTRON Radioisotopes for Medicine and Engineering, Eggenstein-Leopoldshafen, Germany EDELSTAHL ROSSWAG Steel Forging Components, Pfinztal, Germany

US AIR FORCE Military Air Base Data Centre, Ramstein, Germany

MGB MIGROS Datacenter, Herdern, Switzerland TEOXANE Beauty Laboratories, Geneve, Switzerland EGGER ÖSTERREICHER Wood Panels Plant, St. Johann in Tirol, Austria

.OUR PRODUCTS

KTK KLIMATECHNIK offers a complete range of aircooled, watercooled and condenserless liquid Chillers and Heat Pumps especially dedicated to the industrial processes and customized air conditioning applications, with a wide capacity from 5 to 3900 kW. The offer also includes Packaged RoofTop units from 60 to 250 kW, Condensing units, Remote Condensers and Dry-Coolers.

A wide range of models is also available with the low GWP refrigerants R452B, R454B, R513A and HFO-R1234ze.

Junior line

Aircooled, watercooled and condenserless liquid Chillers for small and medium areas. Condensing units.

CANN Ha

Top line

Aircooled, watercooled and condenserless liquid Chillers for wide areas.

System line

Remote Condensers, Dry-Coolers and remote Hydronic Modules.

Upper line

Packaged Roof Top units with single or double skin for medium and wide areas.

idroinverter

The IDROINVERTER liquid Chillers and Heat Pumps range is based on Inverter technology applied overall on compressors, pumps and fans. Units are capable to adapt their power and energy consumption to every need, for the highest efficiency at partial load.

The family includes both aircooled and watercooled models with a wide capacity range.

Models with R513A, R452B and R454B refrigerants are also available

The MAXIPOWER aircooled, watercooled and condenserless liquid Chillers are equipped with latest generation Screw compressors. The high cooling capacity makes them suitable for comfort of wide areas and cooling of industrial processes. The family also includes models with R513A or the innovative HFO-R1234ze refrigerant with GWP <1 (Global Warming Potential).

The AQUAPLUS aircooled, watercooled and condenserless range of liquid Chillers and Heat Pumps is the best solution for medium areas in commercial and service buildings.

Compactness and easy installation are the key benefits of those units, which can also feature the additional AQUALOGIK technology, a built-in hydronic kit with variable speed circulating pump which makes the use of inertial tank superfluous.

Models with R452B and R454B refrigerants are also available.

The TURBOLINE aircooled and watercooled liquid Chillers, equipped with Turbocor Magnetic Levitation compressors, are at the top level in energy efficiency.

The units feature the highest EER and SEER/SEPR in the market and the lowest starting current, in addition to maximum reliability and extra silent operation.

The family also includes models with R513A or the innovative HFO-R1234ze refrigerant with GWP <1 (Global Warming Potential).

MIDYLINE

The dedicated Heat Pumps of the MIDYLINE series provide ambient heating, domestic hot water and air conditioning. Optimized for heating mode, the units can produce hot water up to 60 °C.

The range features AQUALOGIK technology, a built-in hydronic kit with variable speed circulating pump which makes the use of inertial tank superfluous.

The AIRPLUS single skin packaged Roof Top units feature Scroll compressors and EC Inverter Plug-Fans.

Units are also available with Free-Cooling technology with 2 or 3 dampers.

The MULTIPOWER liquid Chillers and Heat Pumps range is based on multi-Scroll technology. This ensures an high efficiency at partial load since the cooling power is split among the different compressors based on the actual need detected by the system. The family includes both aircooled and watercooled models with a wide capacity range, also with R452B and R454B refrigerants.

The AIRMAXI double skin packaged Roof Top units feature Scroll or Inverter Scroll compressors and EC Inverter Plug-Fans.

The wide range includes several sections for air mixing or Free-Cooling and the additional Heat Recovery with Cross-flow, Wheel or Thermodynamic Coil-Boost technology.

The ENERGYPOWER aircooled liquid Chillers provide air conditioning, ambient heating and domestic hot water at the same time and with the same unit.

Those Multifunctional units for 4-Pipe systems are especially suitable for hotels, hospitals or multi-purpose buildings with service and residential users. Units feature Scroll or Screw compressors and are also available with R452B, R454B or R513A refrigerant.

Focus on ErP Regulations

EUROPEAN UNION Regulations (ErP – ECODESIGN)

ErP: UE 2016/2281
ErP: UE 813/2013

aimed at setting precise **Minimum Energy Efficiency Standards** for **E**lectric **R**elated **P**roducts (**ErP**). Mandatory compliance to standards of key components (fans, pumps, motors) and entire unit (Chiller / Heat Pump / Packaged Roof Top units).

The new minimum energy efficiency standards required by ErP Directive EU N. 2016/2281 came into force on 1st January 2021. These new requirements have a significant impact on existing product range.

Products covered by the Regulation

Liquid Chillers

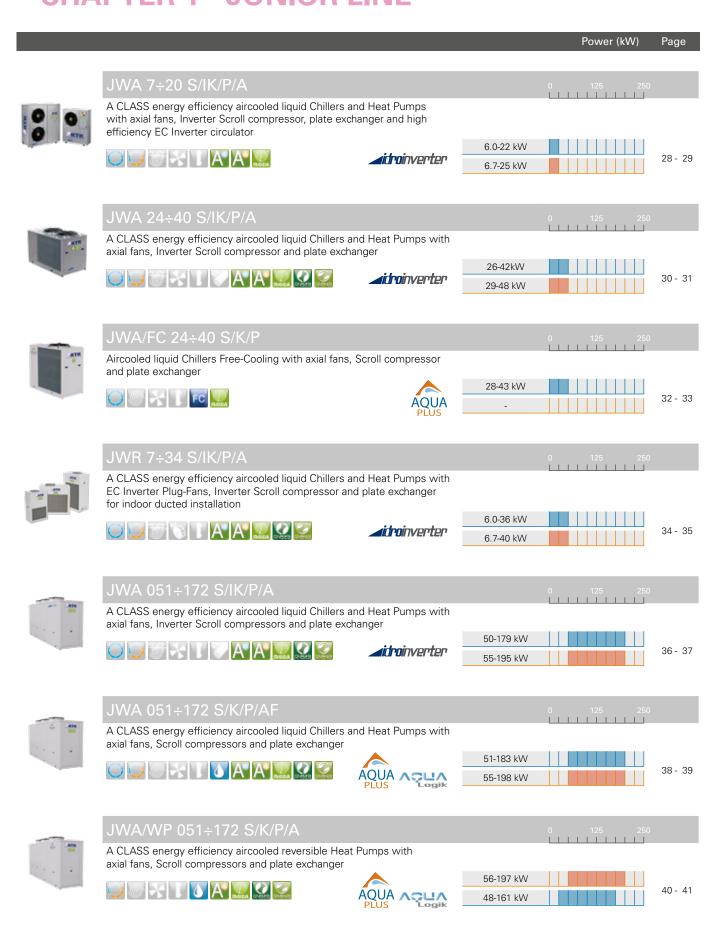
Comfort

Process

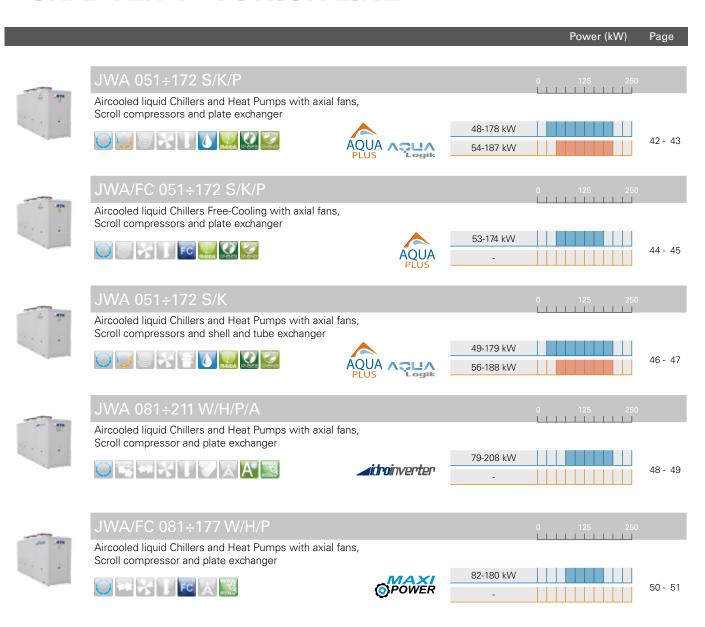
Packaged Roof Top units

Cooling only

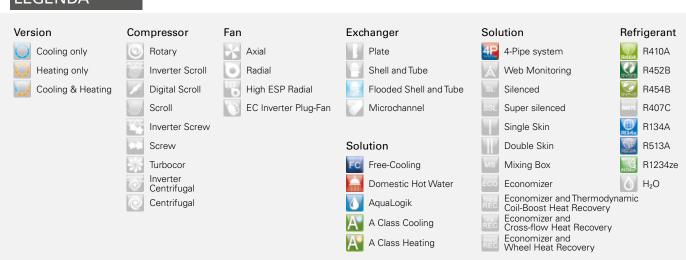
Heat Pumps

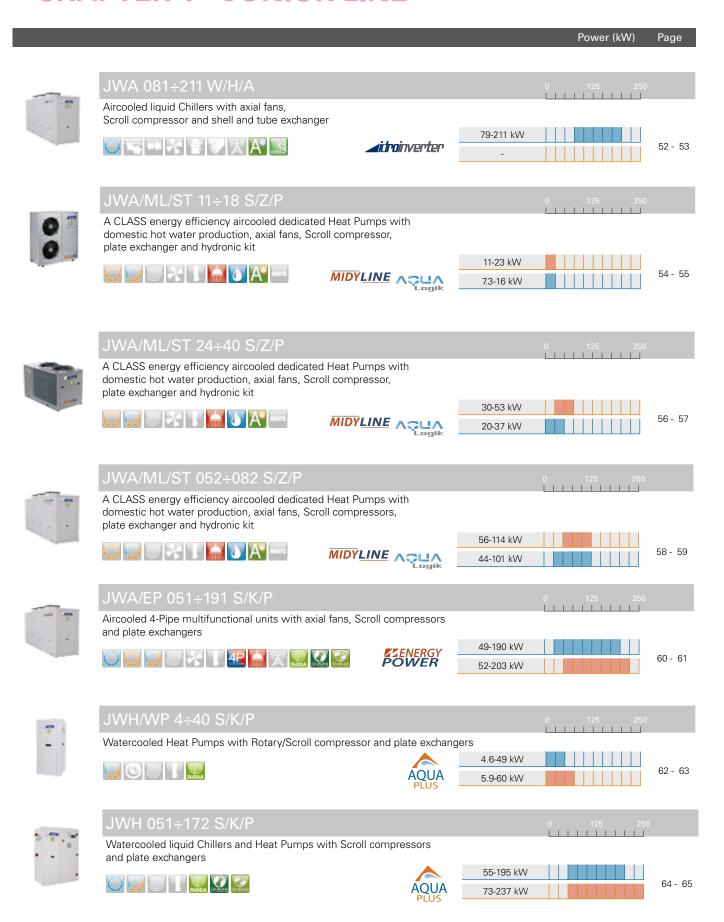

Condensing units and condenserless units are excluded from ErP Regulation.

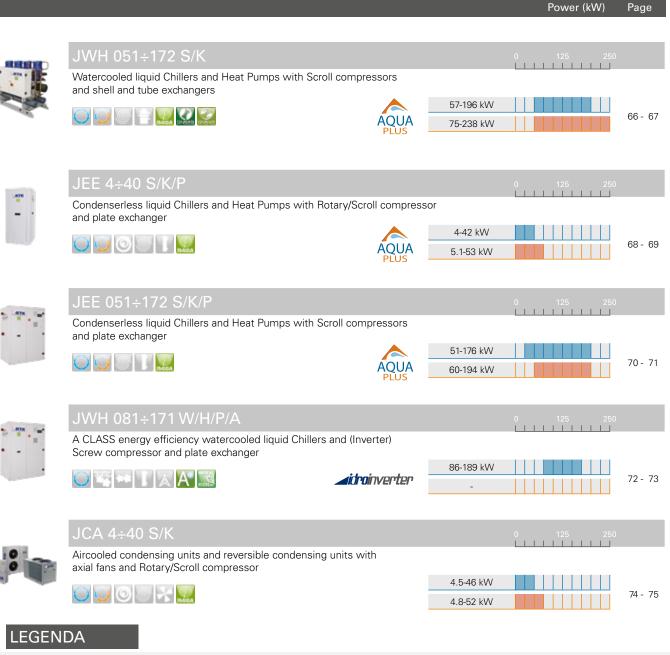
The intended use of liquid Chillers, that is **comfort (SEER)** or **process (SEPR)**, must be specified.

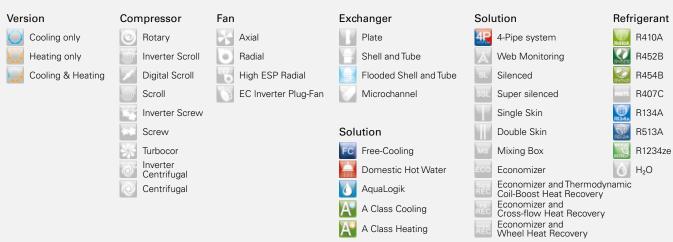

The compliance with ErP Directive is a key requirement to mark products with the CE logo.

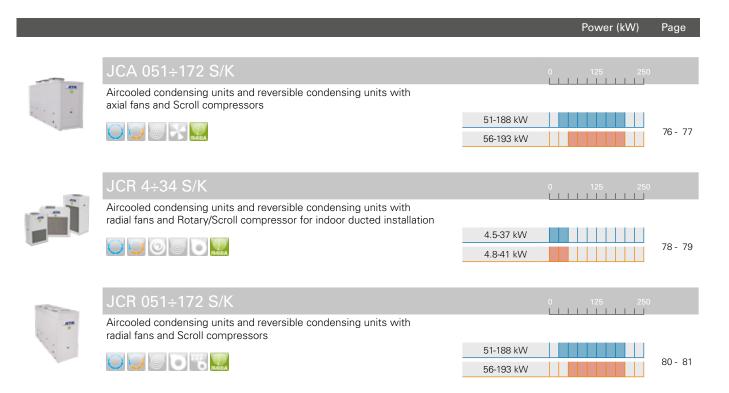
Units without CE are saleable outside Europe only. These latter units, however, comply with all directives foreseen by CE Declaration: Machinery Directive 2006/42/EC, Pressure Equipment (PED) Directive 2014/68/EU, Low Voltage Directive (LVD) 2014/35/EU, Electromagnetic Compatibility (EMC) Directive 2014/30/EU, RoHS Directive 2011/65/EU and RAEE Directive 2012/19/EU.

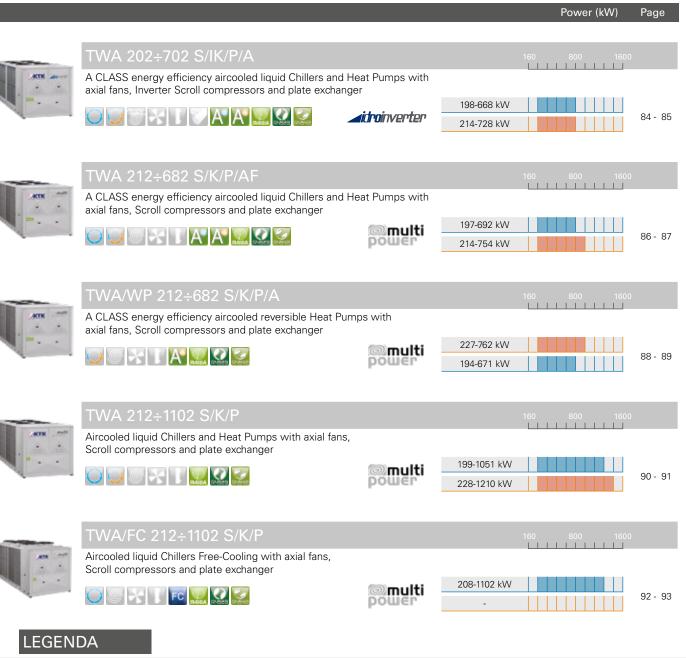



CHAPTER 1 - JUNIOR LINE

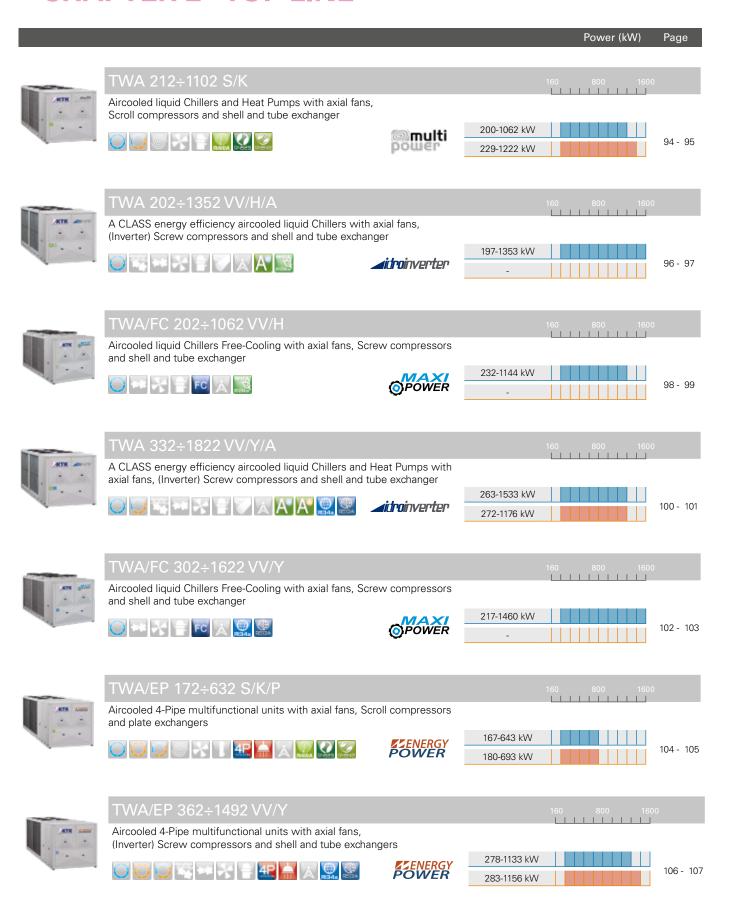

LEGENDA

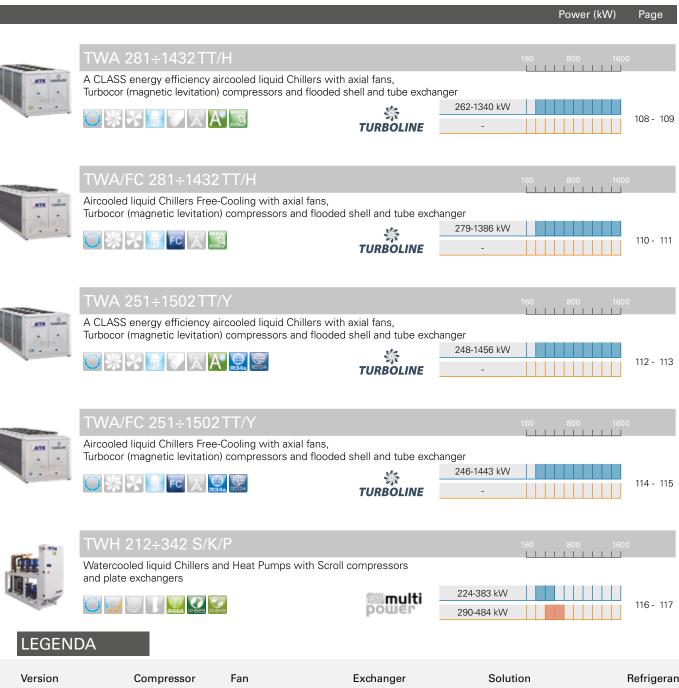


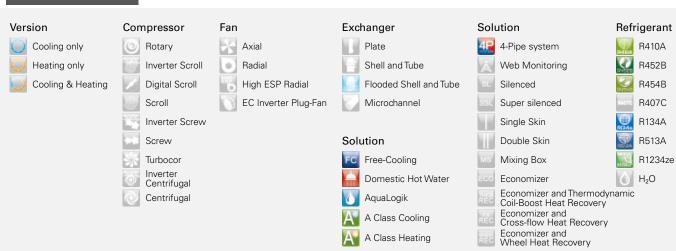


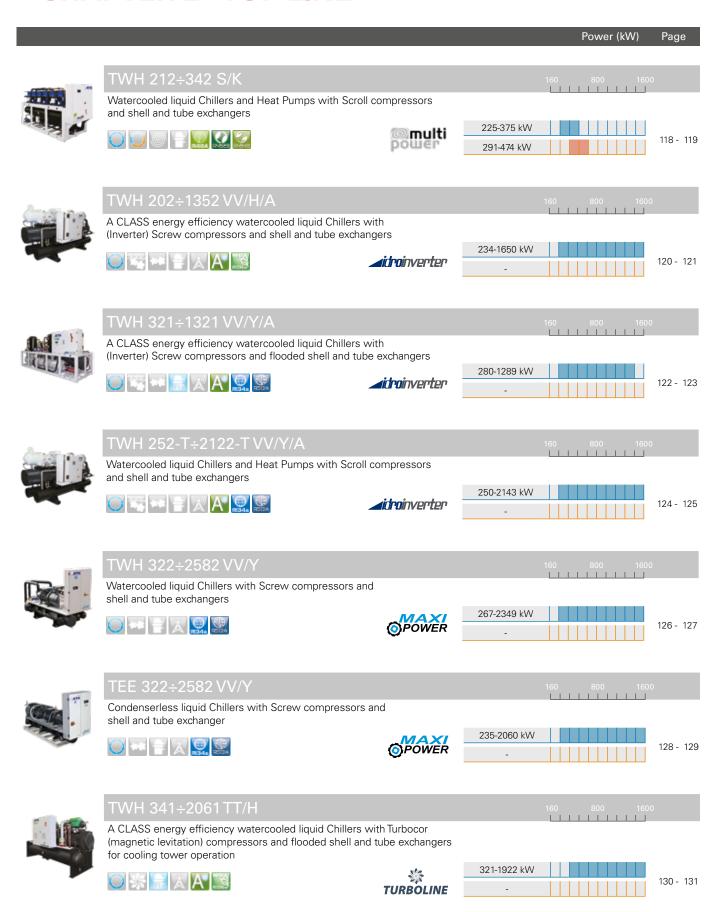


Heating

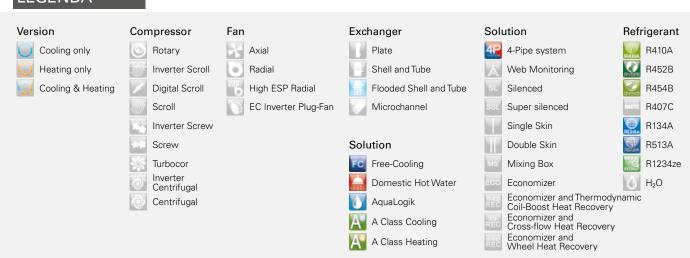








Heating

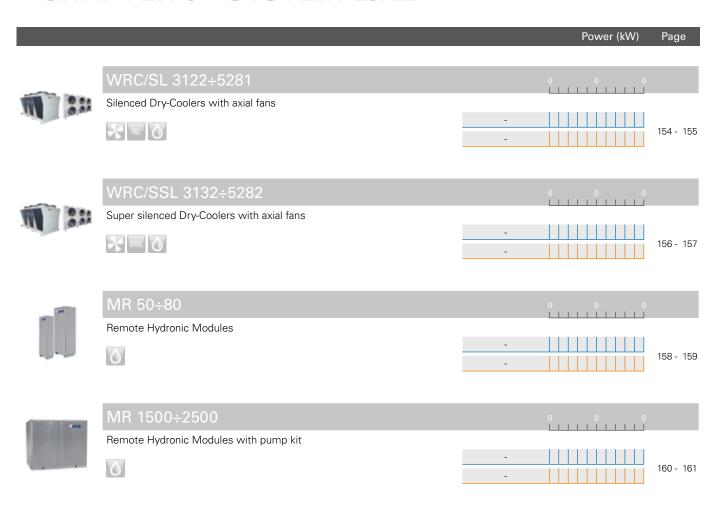


2 3 4

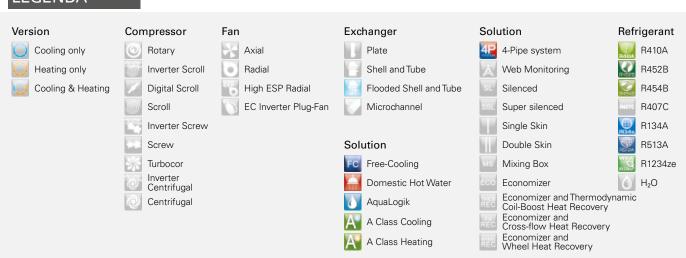
CHAPTER 2 - TOP LINE

Power (kW) Page A CLASS energy efficiency watercooled liquid Chillers with Turbocor (magnetic levitation) compressors and flooded shell and tube exchangers for Dry-Cooler operation 301-1802 kW 条 m a A A R 132 - 133 **TURBOLINE** A CLASS energy efficiency watercooled liquid Chillers with Turbocor (magnetic levitation) compressors and flooded shell and tube exchangers for cooling tower operation 319-3912 kW 134 - 135 **TURBOLINE** A CLASS energy efficiency watercooled liquid Chillers with Turbocor (magnetic levitation) compressors and flooded shell and tube exchangers for Dry-Cooler operation 298-1584 kW - A A ● 136 - 137 **TURBOLINE**

LEGENDA



CHAPTER 3 - SYSTEM LINE

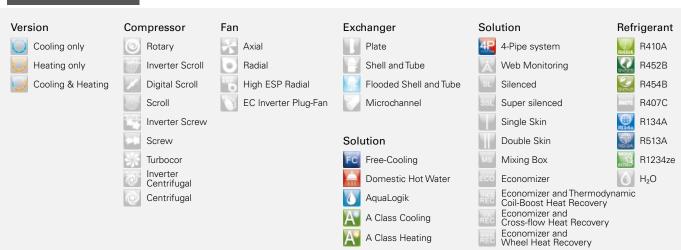

		Power ((kW) Page
	ARC 1111÷4222 K	0 0	0
**	Remote aircooled Condensers with axial fans		
	₹	-	140 - 141
	RATES	-	140 141
	ARC/SL 1111÷4222 K	0 0	0
~ A A	Silenced Remote aircooled Condensers with axial fans		
AD W	🔀 BL 🔐	-	142 - 143
	No. Raca	-	142 - 143
	ARC/SSL 2111÷4222 K	0 0	0
- A A	Super silenced Remote aircooled Condensers with axial fans		
A	→ sst	-	144 145
	Sol Reck	-	144 - 145
	ARC 4141÷5282Y	0 0	0
AAA	Remote aircooled Condensers with axial fans		
666		-	146 - 147
	100 miles	-	140 - 147
	ARC/SL 4231÷5282 Y	0 0	
A AA	Silenced Remote aircooled Condensers with axial fans		
666		-	148 - 149
	30 R34 R35	-	140 - 149
	ARC/SSL 4151÷5281Y	0 0	0
A AA	Super silenced Remote aircooled Condensers with axial fans		
666	SSL SSL SSL	-	150 - 151
	300 R34 R34	-	150 - 151
	WRC 3121÷5282	0 0	0
	Dry-Coolers with axial fans		
- All	* 0	-	152 - 153
		-	102 - 100

3

CHAPTER 3 - SYSTEM LINE

LEGENDA

CHAPTER 4 - UPPER LINE



2 3

CHAPTER 4 - UPPER LINE

LEGENDA

JUNIOR LINE

Aircooled, Watercooled & Condenserless liquid Chillers and Heat Pumps for small and medium areas. Condensing units.

JWA 7÷20 S/IK/P/A	28 - 29
JWA 24÷40 S/IK/P/A	30 - 31
JWA/FC 24÷40 S/K/P	32 - 33
JWR 7÷34 S/IK/P/A	34 - 35
JWA 051÷172 S/IK/P/A	36 - 37
JWA 051÷172 S/K/P/AF	38 - 39
JWA/WP 051÷172 S/K/P/A	40 - 41
JWA 051÷172 S/K/P	42 - 43
JWA/FC 051÷172 S/K/P	44 - 45
JWA 051÷172 S/K	46 - 47
JWA 081÷211 W/H/P/A	48 - 49
JWA/FC 081÷177 W/H/P	50 - 51
JWA 081÷211 W/H/A	52 - 53
JWA/ML 6÷10 S/IK/P/A	54 - 55
JWA/ML 18÷27 S/F/P/A	56 - 57
JWA/ML 032÷082 S/F/P/A	58 - 59
JWA/EP 051÷191 S/K/P	60 - 61
JWH/WP 4÷40 S/K/P	62 - 63
JWH 051÷172 S/K/P	64 - 65
JWH 051÷172 S/K	66 - 67
JEE 4÷40 S/K/P	68 - 69
JEE 051÷172 S/K/P	70 - 71
JWH 081÷171 W/H/P/A	72 - 73
JCA 4÷40 S/K	74 - 75
JCA 051÷172 S/K	76 - 77
JCR 4÷34 S/K	78 - 79
JCR 051÷172 S/K	80 - 81

JWA 7÷20 S/IK/P/A

A CLASS ENERGY EFFICIENCY AIRCOOLED LIQUID CHILLERS AND HEAT PUMPS WITH AXIAL FANS, INVERTER SCROLL COMPRESSOR, PLATE EXCHANGER AND HIGH EFFICIENCY EC INVERTER CIRCULATOR.

The JWA 7÷20 S/IK/P/A series is the winning choice for ideal comfort in residential and commercial environments. The range, in A CLASS energy efficiency, features Inverter technology on the compressor, for a high efficiency at partial loads. The range excels for its compact sizes, quietness and optimised water circuit, on a peraluman structure. Particular design features enable immediate and effective use, easy installation and lasting reliability. These extremely compact and high-tech units offer you ideal comfort in all seasons.

The unit features high efficiency integrated circulator with EC Inverter brushless electronic motor. The Heat Pump version is designed for hot water production up to 55 °C.

The units are compliant to the ErP Regulation.

idroinverter

FROM 6.0 KW TO 22 KW.

VERSION

JWA

Cooling only

JWA/WP

Reversible Heat Pump

FEATURES

- Structure with supporting frame, in peraluman, galvanized sheet and with rubber shock absorbers on the frame.
- DC INVERTER Scroll compressor with internal overheat protection and crankcase heater.
- Axial fans with low ventilation and special wing profile, directly coupled to external rotor motors.
- Condenser made of copper tubes and aluminium finned coil, complete with drain pan for WP version only.
- Evaporator AISI 316 stainless steel braze welded plates type, complete with water differential pressure switch. On the Heat Pump units it is always installed an antifreeze heater.
- Electronic expansion valve.
- R410A refrigerant.
- Electrical board includes: main switch with door lock device, fuses, compressor and pump remote control switch.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C in cooling mode. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation and high and low pressure transducers on cooling circuit.
- Functioning in heating mode with outside air temperature down to -15 °C.
- Water circuit includes: water differential pressure switch, high efficiency EC Inverter circulator, safety valve and expansion vessel.
- High efficiency circulator with EC Inverter brushless electronic motor with 3 speeds selectable by
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

ΤX Coil with pre-coated fins

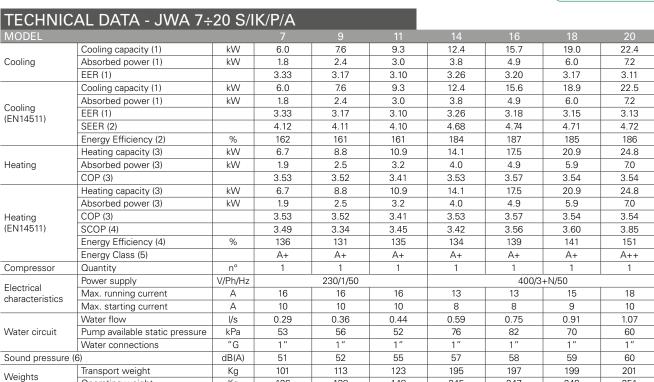
FΕ Antifreeze heater for evaporator

LOOSE ACCESSORIES:

CR Remote control panel

IS Modbus RTU protocol, RS485 serial

interface


RP Coils protection metallic guards

FΡ Coils protection metallic guards

with filter

EUROVENT CERTIFIED PERFORMANCE

138

148

245

247

249

251

126

Kg

DIMENSIONS

Operating weight

MODEL			7	9	11	14	16	18	20
L	STD	mm	870	870	870	1160	1160	1160	1160
W	STD	mm	320	320	320	500	500	500	500
Н	STD	mm	1100	1100	1100	1270	1270	1270	1270

CLEARANCE AREA

JWA 7÷11 S/IK/P/A 200 | 200 | 800 | 200 JWA 14÷20 S/IK/P/A 200 | 200 | 800 | 200

NOTES

- 1. Chilled water from 12 to 7 $^{\circ}$ C, ambient air temperature 35 $^{\circ}$ C.
- 2. Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- 3. Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b.
- Seasonal energy efficiency of heating at low temperature with average climatic conditions. According to EU Regulation n. 813/2013.
- Seasonal energy efficiency class of heating at low temperature with average climatic conditions. According to EU Regulation n. 811/2013..
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of WP version are specified on technical brochure.

*idro*inverter

JWA 24÷40 S/IK/P/A

A CLASS ENERGY EFFICIENCY AIRCOOLED LIQUID CHILLERS AND HEAT PUMPS WITH AXIAL FANS, INVERTER SCROLL COMPRESSOR AND PLATE EXCHANGER.

The liquid Chillers and Heat Pumps of the JWA 24÷40 S/IK/P/A series, with R410A refrigerant, are designed to satisfy the needs of small and medium domestic and service sector environments. With a peraluman structure corrosion-resistant over time, these units can be combined with Fan Coil units or with intermediate heat exchangers for process cooling applications.

All units feature A CLASS energy efficiency and are equipped with Inverter control on Scroll compressor for a better efficiency at partial loads (SEER/SCOP). The Microchannel condensing coil, available on the dedicated version, ensures an even higher efficiency (high EER), having a better heat exchange than traditional coils.

A wide range of accessories, factory fitted or supplied separately, complete the outstanding versatility and functionality of the series.

The Heat Pump version is designed for hot water production up to 55 °C.

The units are compliant to the ErP Regulation.

On request, units can be supplied with R452B (JWA 24÷40 S/IG/P/A) or R454B (JWA 24÷40 S/ IL/P/A) refrigerant.

FROM 26 KW TO 42 KW.

VERSION

JWA

Cooling only

JWA/MC

Cooling only with MICROCHANNEL condensing coil

JWA/WP

Reversible Heat Pump

FEATURES

- Structure with supporting frame, in peraluman and galvanized sheet.
- DC INVERTER Scroll compressor with oil sight glass, internal overheat protection and crankcase heater.
- Axial fans with low ventilation and special wing profile, directly coupled to external rotor motors.
- Condenser made of copper tube and aluminum finned coils or aluminium MICROCHANNEL coils.
- Evaporator AISI 316 stainless steel braze welded plates type, complete with water differential pressure switch. On the Heat Pump units it is always installed an antifreeze heater.
- Electronic expansion valve.
- R410A refrigerant. On request R452B or R454B refrigerant.
- Electrical board includes: main switch with door lock device, fuses and pump remote control switch.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C in cooling mode. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation and high and low pressure transducers on cooling circuit.
- Functioning in heating mode with outside air temperature down to -15 °C.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

BT Low water temperature kit TX Coil with pre-coated fins TXB Coil with epoxy treatment PS Single circulating pump FF Antifreeze heater for evaporator

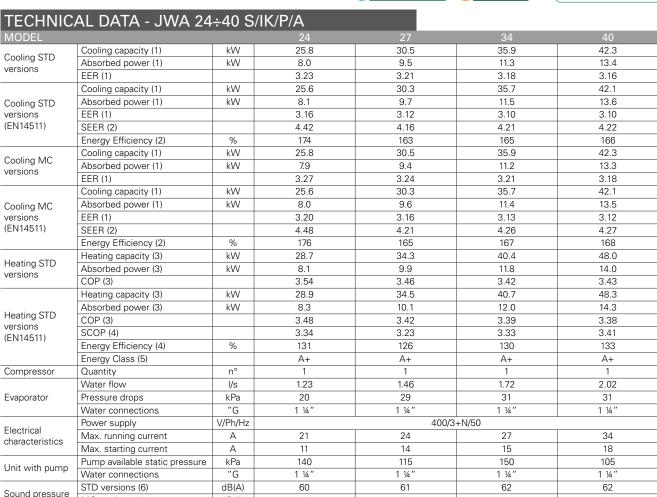
LOOSE ACCESSORIES:

CR Remote control panel

Modbus RTU protocol, RS485 serial IS

RP Coils protection metallic guards

FΡ Coils protection metallic guards


with filter

ΔG Rubber shock absorbers

EUROVENT CERTIFIED PERFORMANCE

D^{\perp}	$\Lambda \square \Lambda$		NIS.
	M = 1	451	11015

Weights

MC versions (6)

Transport weight

Operating weight

MODEL			24	27	34	40
L	STD/MC	mm	1850	1850	1850	1850
W	STD/MC	mm	1000	1000	1000	1000
Н	STD/MC	mm	1300	1300	1300	1300

CLEARANCE AREA

JWA 24÷40 S/IK/P/A

500 800 800 800

dB(A)

Κg

Kg

59

224

229

60

239

244

61

269

275

61

283

289

NOTES

- Chilled water from 12 to 7 °C, ambient air temperature 35 °C.
- 2. Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b. 3.
- Seasonal energy efficiency of heating at low temperature with average climatic 4 conditions. According to EU Regulation n. 813/2013.
- 5. Seasonal energy efficiency class of heating at low temperature with average climatic conditions. According to EU Regulation n. 811/2013.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- Data of MC version are specified on technical brochure.
- N.B. Weights of WP version are specified on technical brochure.

JWA/FC 24÷40 S/K/P

AIRCOOLED LIQUID CHILLERS FREE-COOLING WITH AXIAL FANS, SCROLL COMPRESSOR AND PLATE EXCHANGER.

The liquid Chillers of the JWA/FC 24÷40 S/K/P series, with R410A refrigerant, offer innovative technology to meet the needs of systems for both domestic as well as industrial applications requiring the production of cooled water continuously year-round.

During the cold months, in the FREE-COOLING operation mode, the return liquid of the system is cooled directly by forced convection of outdoor air through the condensing coil, thus saving energy by not operating the unit's Scroll compressors. A 3-way valve system is controlled by the electronic microprocessor controller, allowing functioning in CHILLER, FREE-COOLING or MIXED (simultaneously CHILLER and FREE-COOLING) modes.

The units are compliant to the ErP 2021 Regulation for process cooling application.

FROM 28 KW TO 43 KW.

VERSION

JWA/FC

Cooling only

JWA/FC/SP

Cooling only with tank and pump

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Axial fans with low ventilation and special wing profile, directly coupled to external rotor motors.
- Condenser made of copper tubes and aluminium finned coil combined with FREE-COOLING coil.
- Evaporator AISI 316 stainless steel braze welded plates type, complete with water differential pressure switch.
- R410A refrigerant.
- Electrical board includes: main switch with door lock device, fuses, compressor and pump remote control switch.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, high and low pressure transducers on cooling circuit and an electrical heater on electrical board
- Water circuit for SP version includes: insulated tank, circulating pump, safety valve, gauge and expansion vessel.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

BT Low water temperature kit TX Coil with pre-coated fins PS Single circulating pump

LOOSE ACCESSORIES:

CR Remote control panel

Modbus RTU protocol, RS485 serial IS

interface

RP Coils protection metallic guards

AG Rubber shock absorbers

TECHNIC	AL DATA - JWA/FC	24÷4	0 S/K/P						
MODEL			24	27	34	40			
Cooling	Cooling capacity (1)	kW	27.9	31.4	37.3	42.8			
	Absorbed power (1)	kW	9.5	11.0	13.9	15.6			
	EER (1)		2.94	2.85	2.68	2.74			
	Cooling capacity (1)	kW	27.5	30.9	36.7	42.1			
Cooling	Absorbed power (1)	kW	9.9	11.5	14.5	16.3			
(EN14511)	EER (1)		2.78	2.69	2.53	2.58			
	SEPR (2)		5.61	5.62	5.21	5.22			
Free-Cooling	Air temperature (3)	°C	-1.7	-2.7	0.5	-1.2			
cycle	Absorbed power (3)	kW	0.98	0.98	1.96	1.96			
Compressor	Quantity	n°	1	1	1	1			
	Water flow	l/s	1.55	1.74	2.07	2.37			
Water circuit	Pressure drops	kPa	117	142	132	141			
	Water connections	"G	1"	1"	1"	1"			
Floresteel	Power supply	V/Ph/Hz	400/3+N/50						
Electrical characteristics	Max. running current	А	20	22	29	32			
Characteristics	Max. starting current	Α	144	144	162	201			
	Water flow	l/s	1.55	1.74	2.07	2.37			
Hait CD	Pump available static pressure	kPa	109	152	150	129			
Unit SP version	Tank water volume	I	100	100	100	100			
	Water connections	"G	1"	1"	1"	1"			
Sound pressure	STD/SP version (4)	dB(A)	60	61	61	61			
\\/aimhta	Transport weight (5)	Kg	415	430	470	485			
Weights	Operating weight (5)	Kg	437	452	499	515			

DIMENSIONS

MODEL			24	27	34	40
L	STD/SP	mm	1850	1850	1850	1850
W	STD/SP	mm	900	900	900	900
Н	STD/SP	mm	1840	1840	1840	1840

CLEARANCE AREA

JWA/FC 24÷40 S/K/P 500 800 800 800

NOTES

- 1. Chilled water (with ethylene glycol at 30%) from 15 to 10 °C, ambient air temperature 35 °C.
- 2. Seasonal energy efficiency of process cooling at high temperature. According to EU Regulation n. 2016/2281.
- 3. Ambient air temperature at which the cooling capacity indicated in point (1) is reached.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
 Unit without tank and pump. 4.
- 5.

A CLASS ENERGY EFFICIENCY AIRCOOLED LIQUID CHILLERS AND HEAT PUMPS WITH EC INVERTER PLUG-FANS, INVERTER SCROLL COMPRESSOR AND PLATE EXCHANGER FOR INDOOR DUCTED INSTALLATION.

The A CLASS indoor liquid Chillers of the JWR 7÷34 S/IK/P/A series, with R410A refrigerant and EC Inverter Plug-Fans, are designed for small and medium domestic or service sector systems with particular difficulty in positioning units outside the building.

With a prepainted plate structure, these units can be combined with Fan Coil units or with intermediate heat exchangers for process cooling applications.

These units are equipped with particular technical and design adjustments that enable an immediate and efficient use, in addition to remarkably quiet operation and a significant useful head of the fan. A wide range of accessories, factory fitted or supplied separately, complete the outstanding versatility and functionality of the series.

The Heat Pump version is designed for hot water production up to 55 °C.

The units are compliant to the ErP Regulation.

On request, models 24÷34 can be supplied with R452B (JWR 24÷34 S/IG/P/A) or R454B (JWR 24÷34 S/IL/P/A) refrigerant.

FROM 6.0 KW TO 36 KW.

idroinverter

VERSION

JWR

Cooling only

JWR/WP

Reversible Heat Pump

FEATURES

- Self-supporting prepainted steel frame.
- DC INVERTER Scroll compressor with internal overheat protection and crankcase heater.
- High efficiency reverse blade EC INVERTER PLUG-FAN, with electronic speed control.
- Condenser made of copper tubes and aluminium finned coil, complete with drain pan for WP
- Evaporator AISI 316 stainless steel braze welded plates type, complete with water differential pressure switch. On the Heat Pump units it is always installed an antifreeze heater.
- Electronic expansion valve.
- R410A refrigerant. On request R452B or R454B refrigerant.
- Electrical board includes: main switch with door lock device, fuses, compressor (7÷20) and pump remote control switch.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C in cooling mode. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation and high and low pressure transducers on cooling circuit.
- Functioning in heating mode with outside air temperature down to -15 °C.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

ВТ Low water temperature kit TX Coil with pre-coated fins PS Single circulating pump

FΕ Antifreeze heater for evaporator

LOOSE ACCESSORIES:

CR Remote control panel

IS Modbus RTU protocol, RS485 serial interface

Coils protection metallic guards RP

FP Coils protection metallic guards

with filter

Rubber shock absorbers AG

TECHNIC	AL DATA - JWR 7÷	34 S/I	K/P/A									
MODEL			7	9	11	14	16	18	20	24	27	34
	Cooling capacity (1)	kW	6.0	7.6	9.3	12.4	15.7	19.0	22.4	25.8	30.5	35.9
Cooling	Absorbed power (1)	kW	1.9	2.5	3.1	4.3	5.4	6.5	7.7	9.3	10.3	12.1
	EER (1)		3.16	3.04	3.00	2.88	2.91	2.92	2.91	2.77	2.96	2.97
	Cooling capacity (1)	kW	6.0	7.6	9.3	12.4	15.6	18.9	22.5	25.6	30.3	35.7
0 !:	Absorbed power (1)	kW	1.9	2.5	3.1	4.3	5.4	6.5	7.7	9.4	10.5	12.3
Cooling (EN14511)	EER (1)		3.16	3.04	3.00	2.88	2.89	2.91	2.92	2.72	2.89	2.90
(EIN14511)	SEER (2)		4.12	4.11	4.10	4.32	4.30	4.23	4.33	4.32	4.10	4.12
	Energy Efficiency (2)	%	162	161	161	170	169	166	170	170	161	162
	Heating capacity (3)	kW	6.7	8.8	10.9	14.1	17.5	20.9	24.8	28.7	34.3	40.4
Heating	Absorbed power (3)	kW	2.0	2.6	3.3	4.5	5.4	6.4	7.5	9.4	10.7	12.6
_	COP (3)		3.35	3.38	3.30	3.13	3.24	3.27	3.31	3.05	3.21	3.21
	Heating capacity (3)	kW	6.7	8.8	10.9	14.1	17.5	20.9	24.8	28.9	34.5	40.7
	Absorbed power (3)	kW	2.0	2.6	3.3	4.5	5.4	6.4	7.5	9.6	10.9	12.8
Heating	COP (3)		3.35	3.38	3.30	3.13	3.24	3.27	3.31	3.01	3.17	3.18
(EN14511)	SCOP (4)		3.38	3.27	3.41	3.30	3.43	3.49	3.77	3.21	3.23	3.22
	Energy Efficiency (4)	%	132	128	133	129	134	137	148	125	126	126
	Energy Class (5)		A+	A+	A+	A+	A+	A+	A+	A+	A+	A+
Compressor	Quantity	n°	1	1	1	1	1	1	1	1	1	1
	Water flow	l/s	0.29	0.36	0.44	0.59	0.75	0.91	1.07	1.23	1.46	1.72
Evaporator	Pressure drops	kPa	18	14	18	25	20	29	30	20	29	31
	Water connections	"G	1"	1"	1"	1 1/4"	1 1/4"	1 1/4"	1 1/4"	1 ¼"	1 1/4"	1 ¼"
Fan available stat	tic pressure	Pa	80	80	80	115	115	115	115	150	150	150
EL .: 1	Power supply	V/Ph/Hz		230/1/50					100/3+N/5	0		
Electrical characteristics	Max. running current	Α	17	17	17	14	14	16	19	22	22	25
Characteristics	Max. starting current	А	11	11	11	9	9	10	11	12	12	13
Unit with pump	Pump available static pressure	kPa	53	56	52	76	82	70	60	140	115	150
Onit with pump	Water connections	"G	1"	1"	1"	1 1/4"	1 1/4"	1 1/4"	1 1/4"	1 ¼"	1 1/4"	1 1/4"
Sound pressure	dB(A)	52	53	54	58	58	59	60	62	63	63	
\\/aiabta	Transport weight	Kg	131	136	143	203	213	215	217	353	359	374
Weights	Operating weight	Kg	132	137	144	205	215	217	219	356	362	377

DIMENSIONS

MODEL					11	14	16	18	20	24	27	34
L	STD	mm	900	900	900	900	900	900	900	1500	1500	1500
W	STD	mm	550	550	550	690	690	690	690	800	800	800
Н	STD	mm	1500	1500	1500	1750	1750	1750	1750	1600	1600	1600

CLEARANCE AREA

JWR 7÷11 S/IK/P/A 100 800 800 800 JWR 14÷20 S/IK/P/A 100 800 800 1000 JWR 24÷34 S/IK/P/A 1200 800 800 100

NOTES

- Chilled water from 12 to 7 °C, ambient air temperature 35 °C.
- Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b.
- Seasonal energy efficiency of heating at low temperature with average climatic conditions. According to EU Regulation n. 813/2013.
- Seasonal energy efficiency class of heating at low temperature with average climatic conditions. According to EU Regulation n. 811/2013..
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.

FROM 50 KW TO 179 KW.

Cooling only with MICROCHANNEL

VERSION

Cooling only

JWA/MC

condensing coil

Reversible Heat Pump

JWA/MC/SSL

JWA/WP/SSL

Super silenced cooling only

Super silenced cooling only with

MICROCHANNEL condensing coil

Super silenced reversible Heat Pump

JWA/WP

JWA/SSL

JWA

JWA 051÷172 S/IK/P/A

A CLASS ENERGY EFFICIENCY AIRCOOLED LIQUID CHILLERS AND HEAT PUMPS WITH AXIAL FANS, INVERTER SCROLL COMPRESSORS AND PLATE EXCHANGER.

The A CLASS energy efficiency liquid Chillers and Heat Pumps of JWA 051÷172 S/IK/P/A series, with R410A refrigerant, are designed to satisfy the needs of medium-sized service sector or industrial ambients. They are used, combined with Fan Coil units, for the air conditioning or heating of the rooms or to remove the heat developed during industrial processes.

They are equipped with axial fans, Inverter Scroll compressors and plate exchanger, even in the super silent version. All units feature A CLASS energy efficiency and are equipped with Inverter control on Scroll compressor for a better efficiency at partial loads (SEER/SCOP). The Microchannel condensing coils, available on dedicated versions, ensure an even higher efficiency (high EER), having a better heat exchange than traditional coils. Furthermore, Inverter control is also available on circulating pump and fans (EC Inverter) for a further efficiency improvement. A wide range of accessories, factory fitted or supplied separately, complete the outstanding versatility and functionality of the

Are available as option the new EC Inverter fans with high available static pressure and efficiency for indoor ducted installation.

The Heat Pump versions are designed for hot water production up to 55 °C.

The units are compliant to the ErP Regulation.

On request, units can be supplied with R452B (JWA 051÷172 S/IG/P/A) or R454B (JWA 051÷172 S/IL/P/A) refrigerant.

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- DC INVERTER Scroll and ON-OFF Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tube and aluminum finned coil or aluminium MICROCHANNEL coil.
- Evaporator AISI 316 stainless steel braze welded plates type with one circuit on the refrigerant side and one on the water side in 051÷131 models; with two independent circuits on the refrigerant side and one on the water side in 152÷172 models, complete with water differential pressure switch. On the Heat Pump units it is always installed an antifreeze heater.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R410A refrigerant. On request R452B or R454B refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors and thermocontacts for fans.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C in cooling mode. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, high and low pressure transducers on cooling circuit and an electrical heater on electrical board.
- Functioning in heating mode with outside air temperature down to -15 °C.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers

SI Unit silencement

RFM Cooling circuit shut-off valve on discharge line

RFL Cooling circuit shut-off valve on liquid line

ВТ Low water temperature kit

EC EC Inverter fans

ECH EC Inverter fans with high available static pressure

DS Desuperheater RT Total heat recovery TX Coil with pre-coated fins TXB Coil with epoxy treatment

PS Single circulating pump

PSI Inverter single circulating pump

PD Double circulating pump

PDI Inverter double circulating pump FF Antifreeze heater for evaporator

FΝ Antifreeze heater for pipes

FG Antifreeze heater for single pump and pipes

 FM Antifreeze heater for double pump and pipes

IS Modbus RTU protocol, RS485 serial interface

IST Modbus TCP/IP protocol, Ethernet port

ISB BACnet MSTP protocol, RS485 serial interface

ISBT BACnet TCP/IP protocol, Ethernet port **ISL**

LonWorks protocol, FTT-10 serial interface

ISS SNMP protocol, Ethernet port

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel

RP Coils protection metallic guards FΡ

Coils protection metallic guards with filter

AG Rubber shock absorbers

ΑM Spring shock absorbers

TECHNIC	AL DATA - JWA 05	1÷172	S/IK	/P/A								
MODEL			051	061	071	081	091	101	111	131	152	172
O 1: OTD	Cooling capacity (1)	kW	49.9	57.7	65.7	74.8	85.9	97.7	112	130	152	179
Cooling STD	Absorbed power (1)	kW	15.6	18.1	20.4	23.6	27.0	30.3	35.0	40.5	47.2	55.6
versions	EER (1)		3.20	3.19	3.22	3.17	3.18	3.22	3.20	3.21	3.22	3.22
	Cooling capacity (1)	kW	49.6	57.4	65.4	74.4	85.4	97.2	112	129	151	178
Cooling STD	Absorbed power (1)	kW	15.9	18.4	20.7	24.0	27.5	30.8	35.6	41.1	47.8	56.2
versions	EER (1)		3.12	3.12	3.16	3.10	3.11	3.16	3.15	3.14	3.16	3.17
(EN14511)	SEER (2)		4.41	4.55	4.41	4.39	4.42	4.43	4.49	4.39	4.40	4.34
	Energy Efficiency (2)	%	173	179	173	173	174	174	177	173	173	171
	Cooling capacity (1)	kW	49.9	57.7	65.7	74.8	85.9	97.7	112	130	152	179
Cooling MC	Absorbed power (1)	kW	15.4	17.9	20.2	23.4	26.7	30.0	34.7	40.1	46.7	55.0
versions	EER (1)		3.24	3.22	3.25	3.20	3.22	3.26	3.23	3.24	3.25	3.25
	Cooling capacity (1)	kW	49.6	57.4	65.4	74.4	85.4	97.2	112	129	151	178
Cooling MC	Absorbed power (1)	kW	15.7	18.2	20.5	23.8	27.2	30.5	35.2	40.7	47.3	55.6
versions	EER (1)		3.16	3.15	3.19	3.13	3.14	3.19	3.18	3.17	3.19	3.20
(EN14511)	SEER (2)		4.45	4.60	4.45	4.43	4.46	4.47	4.53	4.43	4.44	4.38
	Energy Efficiency (2)	%	175	181	175	174	175	176	178	174	175	172
	Heating capacity (3)	kW	53.7	62.2	71.0	80.7	92.6	105	121	140	164	193
Heating STD	Absorbed power (3)	kW	16.2	18.7	21.2	24.5	28.0	31.4	36.4	41.8	49.0	57.7
versions	COP (3)		3.31	3.33	3.35	3.29	3.31	3.34	3.32	3.35	3.35	3.34
	Heating capacity (3)	kW	54.1	62.6	71.4	81.2	93.2	106	122	141	165	194
	Absorbed power (3)	kW	16.6	19.2	21.6	25.1	28.8	32.2	37.2	43.0	50.0	58.8
Heating STD	COP (3)		3.26	3.26	3.31	3.24	3.24	3.30	3.28	3.27	3.30	3.30
versions	SCOP (4)		3.47	3.43	3.42	3.58	3.6	3.46	3.52	3.49	3.44	3.43
(EN14511)	Energy Efficiency (4)	%	136	134	134	140	141	135	138	137	135	134
	Energy Class (5)	,,,	A+	A+	A+	A+		-	-	-	-	
	Quantity	n°	2	2	2	2	2	2	2	2	4	4
Compressor	Refrigerant circuits	n°	1	1	1	1	1	1	1	1	2	2
Compressor	Capacity steps	n°						oless				
	Water flow	I/s	2.38	2.76	3.14	3.57	4.10	4.67	5.35	6.21	7.26	8.55
Evaporator	Pressure drops	kPa	41	40	32	39	47	40	35	44	33	30
Evaporator	Water connections	"G	1 ½"	1 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"
	Power supply	V/Ph/Hz	1 /2	1 /2	2 /2	2 /2		/3/50	2 /2	2 /2	2 /2	2 /2
Electrical	Max. running current	Α Α	45	45	54	54	63	69	89	89	112	129
characteristics	Max. starting current	A	128	128	176	176	187	237	230	230	245	297
	Pump available static pressure	kPa	140	135	140	125	130	180	175	160	160	145
Unit with pump	Water connections	"G	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"
	STD versions	Pa	70	60	100	80	75	80	80	80	75	65
ECH fan available		Pa	70	60	95	90	80	80	80	80		
static pressure	MC versions	Pa	60	65	95	80	80	75	75	75	75	75
Statio prossuro	MC/SSL versions	Pa	60	65	95	80	80	75	75	75	7.5	75
	STD versions (6)	dB(A)	63	65	66	66	67	68	68	69	68	68
	STD versions with SL											
	accessory (6)	dB(A)	61	62	64	64	65	66	66	67	66	66
Sound pressure	SSL versions (6)	dB(A)	58	60	61	61	62	62	62	63		
234a procedio	MC versions (6)	dB(A)	62	64	65	65	66	67	67	68	67	67
	MC versions with SL accessory (6)	dB(A)	60	61	63	63	64	65	65	66	65	65
	MC/SSL versions (6)	dB(A)	57	59	60	60	61	61	61	62		
	Transport weight	Kg	614	688	747	756	765	857	1086	1095	1449	1494
Weights	Operating weight	Kg	620	695	755	765	775	870	1100	1110	1470	1520

DIMENSIONS

MO	DEL		051	061	071	081	091	101	111	131	152	172
	STD-MC	mm	2350	2350	2350	2350	2350	3550	3550	3550	4700	4700
L	SSL-MC/SSL	mm	2350	2350	2350	3550	3550	3550	4700	4700		
W	STD-SSL-MC-MC/SSL	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
ш	STD-MC	mm	1920	2220	2220	2220	2220	1920	2220	2220	2220	2220
П	SSL-MC/SSL	mm	1920	2220	2220	1920	1920	2220	2220	2220		

CLEARANCE AREA

JWA 051÷172 S/IK/P/A

300 800 800 1800

- Chilled water from 12 to 7 °C, ambient air temperature 35 °C.
- 2. Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- 3.
- Hegulation n. 2016/2281.

 Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b.

 Seasonal energy efficiency of heating at low temperature with average climatic conditions. According to EU Regulation n. 813/2013.

 Seasonal energy efficiency class of heating at low temperature with average climatic conditions. According to EU Regulation n. 811/2013..

 Sound pressure level measured in free field conditions at 1 m from the unit. 4.
- 5.
- According to ISO 3744.

 N.B. Weights of SSL and WP versions are specified on technical brochure.
- N.B. Data of MC versions are specified on technical brochure.

VERSION

JWA

Cooling only

JWA/WP

Reversible Heat Pump

JWA/SSL

Super silenced cooling only

JWA/WP/SSL

Super silenced reversible Heat Pump

JWA/ST

Cooling only with AQUALOGIK technology

JWA/WP/ST

Reversible Heat Pump with AQUALOGIK technology

JWA/SSL/ST

Super silenced cooling only with AQUALOGIK technology

JWA/WP/SSL/ST

Super silenced reversible Heat Pump with AQUALOGIK technology

JWA 051÷172 S/K/P/AF

A CLASS ENERGY EFFICIENCY AIRCOOLED LIQUID CHILLERS AND HEAT PUMPS WITH AXIAL FANS, SCROLL COMPRESSORS AND PLATE EXCHANGER.

The liquid Chillers and Heat Pumps of the JWA 051÷172 S/K/P/AF series, with R410A refrigerant, are designed for medium-sized service sector or industrial ambients and feature A CLASS energy efficiency. They are used, combined with Fan Coil units, for the air conditioning or heating of the rooms or to remove the heat developed during industrial processes.

Equipped with axial fans, Scroll compressors and plate exchanger, even in the super silent version, these units can be completed by a hydraulic circuit with tank, with pump, with tank and pump or with AQUALOGIK technology.

The AQUALOGIK smart control system optimises the water set point and modulates the power supply voltage of the pump and the fans, thus making the use of the inertial tank superfluous. This obtains high energy efficiency, quiet operation and optimised dimensions and costs.

A wide range of accessories, factory fitted or supplied separately, complete the outstanding versatility and functionality of the series.

Are available as option the new EC Inverter fans with high available static pressure and efficiency for indoor ducted installation.

The Heat Pump versions are designed for hot water production up to 55 °C.

The units are compliant to the ErP Regulation.

On request, units can be supplied with R452B (JWA 051÷172 S/G/P/AF) or R454B (JWA 051÷172 S/L/P/AF) refrigerant.

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tubes and aluminium finned coil.
- Evaporator AISI 316 stainless steel braze welded plates type with one circuit on the refrigerant side and one on the water side in 051÷131 models; with two independent circuits on the refrigerant side and one on the water side in 152÷172 models, complete with water differential pressure switch. On the Heat Pump units it is always installed an antifreeze heater.
- R410A refrigerant. On request R452B or R454B refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors and thermocontacts for fans.
- On ST versions water circuit includes: INVERTER circulating pump, safety valve and expansion vessel.
- On ST versions Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C in cooling mode. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, an high/low pressure transducer on cooling circuit and an electrical heater on electrical board.
- Functioning in heating mode with outside air temperature down to -15 °C.
- Microprocessor control and regulation system (with AQUALOGIK technology on ST versions).

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers

SL Unit silencement

RFM Cooling circuit shut-off valve on discharge line

RFL Cooling circuit shut-off valve on liquid line

CT Condensing control down to 0 °C CC Condensing control down to -20 °C

ВТ Low water temperature kit

EC EC Inverter fans

FCH EC Inverter fans with high available static pressure

DS Desuperheater

RT Total heat recovery

ΤX Coil with pre-coated fins

SI Inertial tank

FF

PS Single circulating pump

PD Double circulating pump

Antifreeze heater for pipes FΝ

FO Antifreeze heater for tank and pipes

Antifreeze heater for evaporator

FG Antifreeze heater for single pump and pipes

FM Antifreeze heater for double pump and pipes

FUM Antifreeze heater for tank, single pump and pipes

FDM Antifreeze heater for tank, double pump and pipes

SS Soft start

IS Modbus RTU protocol, RS485 serial interface

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel

RP Coils protection metallic guards

FΡ Coils protection metallic guards with filter

AG Rubber shock absorbers ΑM Spring shock absorbers

EUROVENT CERTIFIED PERFORMANCE

ш	NИ	ш,	VIC.		NS
ועו	IVI		\mathbf{v}	U	כעו

static pressure

Sound pressure

Weights

Weights

(ST versions)

ST versions

SSL/ST versions

STD and ST versions (6)

SSL and SSL/ST versions (6)

With SL accessory (6)

Transport weight (7)

Operating weight (7)

Transport weight

Operating weight

MC	DEL		051	061	071	081	091	101	111	131	152	172
	STD-ST	mm	2350	2350	2350	2350	2350	3550	3550	3550	4700	4700
L	SSL-SSL/ST	mm	2350	2350	2350	3550	3550	3550	4700	4700		
W	STD-SSL-ST-SSL/ST	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	STD-SSL-ST-SSL/ST	mm	1920	2220	2220	2220	2220	1920	2220	2220	2220	2220
П	SSL-SSL/ST	mm	1920	2220	2220	1920	1920	2220	2220	2220		

CLEARANCE AREA

JWA 051÷172 S/K/P/AF 300 800 800 1800

Pa

Pa

dB(A)

dB(A)

dB(A)

Kg

Kg

Κg

Kg

- 1. Chilled water from 12 to 7 °C, ambient air temperature 35 °C.
- Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- 3. Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b.
- Seasonal energy efficiency of heating at low temperature with average climatic conditions. According to EU Regulation n. 813/2013.
- Seasonal energy efficiency class of heating at low temperature with average climatic conditions. According to EU Regulation n. 811/2013..
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- Unit without tank and pump.
- N.B. Weights of SSL and WP versions are specified on technical brochure.

JWA/WP 051÷172 S/K/P/A

A CLASS ENERGY EFFICIENCY AIRCOOLED REVERSIBLE HEAT PUMPS WITH AXIAL FANS, SCROLL COMPRESSORS AND PLATE EXCHANGER.

The reversible Heat Pumps of the JWA/WP 051÷172 S/K/P/A series, with R410A refrigerant, are designed for medium-sized service sector or industrial ambients and feature A CLASS energy efficiency. They are used, combined with terminal units, for the heating or air conditioning of the rooms and are supplied with Modbus RTU protocol through RS485 serial interface.

Equipped with axial fans, Scroll compressors and plate exchanger, even in the super silent version, these units can be completed by a hydraulic circuit with tank, with pump, with tank and pump or with AQUALOGIK technology.

The AQUALOGIK smart control system optimises the water set point and modulates the power supply voltage of the pump and the fans, thus making the use of the inertial tank superfluous. This obtains high energy efficiency, quiet operation and optimised dimensions and costs.

A wide range of accessories, factory fitted or supplied separately, complete the outstanding versatility and functionality of the series.

Are available as option the new EC Inverter fans with high available static pressure and efficiency for indoor ducted installation.

Units are designed for hot water production up to 55 °C.

The units are compliant to the ErP Regulation.

On request, units can be supplied with R452B (JWA/WP 051+172 S/G/P/A) or R454B (JWA/WP 051÷172 S/L/P/A) refrigerant.

FROM 56 KWTO 197 KW.

VERSION

JWA/WP

Reversible Heat Pump

JWA/WP/SSL

Super silenced reversible Heat Pump

JWA/WP/ST

Reversible Heat Pump with AQUALOGIK technology

JWA/WP/SSL/ST

Super silenced reversible Heat Pump with AQUALOGIK technology

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tubes and aluminium finned coil.
- Evaporator AISI 316 stainless steel braze welded plates type with one circuit on the refrigerant side and one on the water side in 051÷131 models; with two independent circuits on the refrigerant side and one on the water side in 152÷172 models, complete with water differential pressure switch. On the units it is always installed an antifreeze heater.
- R410A refrigerant. On request R452B or R454B refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors and thermocontacts for fans.
- On ST versions water circuit includes: INVERTER circulating pump, safety valve and expansion vessel.
- On ST versions Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C in cooling mode. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, an high/low pressure transducer on cooling circuit and an electrical heater on electrical board.
- Functioning in heating mode with outside air temperature down to -15 °C.
- Microprocessor control and regulation system (with AQUALOGIK technology on ST versions).

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers

SL Unit silencement

RFM Cooling circuit shut-off valve on discharge line

RFL Cooling circuit shut-off valve on liquid line

CT Condensing control down to 0 °C CC Condensing control down to -20 °C

ВТ Low water temperature kit

EC EC Inverter fans

FCH EC Inverter fans with high available static pressure

DS Desuperheater

RT Total heat recovery

ΤX Coil with pre-coated fins

SI Inertial tank

PS Single circulating pump

PD Double circulating pump FΝ Antifreeze heater for pipes

FO Antifreeze heater for tank and pipes

Antifreeze heater for single pump FG and pipes

FM Antifreeze heater for double pump and pipes

FUM Antifreeze heater for tank, single pump and pipes

FDM Antifreeze heater for tank, double pump and pipes

SS Soft start

IS Modbus RTU protocol, RS485 serial interface

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel

RP Coils protection metallic guards

AG Rubber shock absorbers AM Spring shock absorbers

TECHNICA	AL DATA - JWA/W	P 051-	÷172	S/K/P/	/A							
MODEL			051	061	071	081	091	101	111	131	152	172
	Heating capacity (1)	kW	55.7	63.6	71.4	81.6	94.2	109	124	142	163	197
Heating	Absorbed power (1)	kW	16.9	19.5	21.8	24.4	28.2	33.3	37.2	43.2	49.9	59.0
	COP (1)		3.30	3.26	3.28	3.34	3.34	3.27	3.33	3.29	3.27	3.34
	Heating capacity (1)	kW	56.0	63.9	71.7	81.9	94.6	109	124	143	164	198
	Absorbed power (1)	kW	17.1	19.8	22.2	24.8	28.6	33.7	37.8	44.1	50.9	60.2
Heating	COP (1)		3.27	3.23	3.23	3.30	3.31	3.23	3.28	3.24	3.22	3.29
(EN14511)	SCOP (2)		3.43	3.39	3.38	3.50	3.52	3.42	3.44	3.41	3.40	3.39
	Energy Efficiency (2)	%	134	133	132	137	138	134	135	133	133	133
	Energy Class (3)		A+	A+	A+	A+	-	-	-	-	-	-
	Cooling capacity (4)	kW	48.2	54.9	62.5	71.9	82.3	94.5	108	125	139	161
Cooling	Absorbed power (4)	kW	15.8	18.7	20.7	23.7	28.5	32.0	35.6	41.8	48.0	56.7
	EER (4)		3.05	2.94	3.02	3.03	2.89	2.95	3.03	2.99	2.90	2.84
0 "	Cooling capacity (4)	kW	48.0	54.6	62.2	71.6	82.0	94.2	108	124	138	160
Cooling (EN14511)	Absorbed power (4)	kW	16.0	19.0	21.0	24.0	28.8	32.3	36.0	42.4	48.6	57.4
(EIN14311)	EER (4)		3.00	2.87	2.96	2.98	2.85	2.92	3.00	2.92	2.84	2.79
	Quantity	n°	2	2	2	2	2	3	3	3	4	4
Compressor	Refrigerant circuits	n°	1	1	1	1	1	1	1	1	2	2
	Capacity steps	n°			2				3		4	4
	Water flow	l/s	2.30	2.62	2.99	3.44	3.93	4.52	5.16	5.97	6.64	7.69
Evaporator	Pressure drops	kPa	28	30	31	28	28	23	29	39	38	37
	Water connections	"G	1 ½"	1 ½"	1 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"
E1	Power supply	V/Ph/Hz					400,	/3/50				
Electrical	Max. running current	Α	35	41	48	54	65	72	81	102	109	132
characteristics	Max. starting current	А	130	140	144	169	209	169	197	246	225	276
Electrical	Power supply	V/Ph/Hz					400,	/3/50				
characteristics	Max. running current	Α	39	45	51	57	68	77	86	106	114	136
(ST versions)	Max. starting current	Α	133	143	148	173	212	173	201	250	229	280
	Pump available static pressure	kPa	155	150	140	135	150	195	185	165	160	150
Unit with tank	Tank water volume	I	400	400	400	400	400	400	400	400	600	600
and pump	Water connections	"G	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"
	Water flow	l/s	2.30	2.62	2.99	3.44	3.93	4.52	5.16	5.97	6.64	7.69
Unit ST versions	Pump available static pressure	kPa	155	145	140	135	125	165	150	135	130	120
	Water connections	"G	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"
	STD versions	Pa	70	60	100	100	100	95	60	65	60	65
ECH fan available	SSL versions	Pa	70	60	65	60	60	95	60	60	60	60
static pressure	ST versions	Pa	70	60	100	100	100	95	60	65	60	65
	SSL/ST versions	Pa	70	60	65	60	60	95	60	60	60	60
	STD and ST versions (5)	dB(A)	62	62	65	65	65	66	68	68	69	70
Sound pressure	With SL accessory (5)	dB(A)	60	60	63	63	63	64	66	66	67	68
	SSL and SSL/ST versions (5)	dB(A)	58	58	61	61	60	60	63	63	64	66
\\\ . \ .	Transport weight (6)	Kg	635	644	693	760	807	926	1076	1126	1235	1414
Weights	Operating weight (6)	Kg	640	650	700	770	820	940	1090	1140	1250	1430
Weights	Transport weight	Kg	650	659	708	775	822	946	1096	1146	1255	1434
(ST versions)	Operating weight	Kg	655	665	715	785	830	960	1110	1160	1270	1450

$D\Pi$	MEI	JOI	\bigcirc	ıc
ווע	$VI \subseteq I$	וכע	Ul	VO

MOE	DEL		051	061	071	081	091	101	111	131	152	172
	STD-ST	mm	2350	2350	2350	2350	2350	2350	3550	3550	3550	3550
L	SSL-SSL/ST	mm	2350	2350	2350	2350	2350	3550	3550	4700	4700	4700
W	STD-SSL-ST-SSL/ST	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Н	STD-SSL-ST-SSL/ST	mm	1920	1920	1920	2220	2220	2220	2220	2220	2220	2220

CLEARANCE AREA

JWA/WP 051÷172 S/K/P/A 300 800 800 1800

- Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b.
- 2. Seasonal energy efficiency of heating at low temperature with average climatic conditions. According to EU Regulation n. 813/2013.
- 3. Seasonal energy efficiency class of heating at low temperature with average
- climatic conditions. According to EU Regulation n. 811/2013.. Chilled water from 12 to 7 °C, ambient air temperature 35 °C. Sound pressure level measured in free field conditions at 1 m from the unit. 5. According to ISO 3744.
- Unit without tank and pump.
- N.B. Weights of SSL versions are specified on technical brochure.

FROM 48 KW TO 178 KW.

VERSION

JWA

Cooling only

JWA/WP

Reversible Heat Pump

JWA/SSL

Super silenced cooling only

JWA/WP/SSL

Super silenced reversible Heat Pump

JWA/ST

Cooling only with AQUALOGIK technology

JWA/WP/ST

Reversible Heat Pump with AQUALOGIK technology

JWA/SSL/ST

Super silenced cooling only with AQUALOGIK technology

JWA/WP/SSL/ST

Super silenced reversible Heat Pump with AQUALOGIK technology

JWA 051÷172 S/K/P

AIRCOOLED LIQUID CHILLERS AND HEAT PUMPS WITH AXIAL FANS, SCROLL COMPRESSORS AND PLATE EXCHANGER.

The liquid Chillers and Heat Pumps of the JWA 051÷172 S/K/P series, with R410A refrigerant, are designed for medium-sized service sector or industrial ambients.

They are used, combined with Fan Coil units, for the air conditioning of the rooms or to remove the heat developed during industrial processes. They can be supplied with Modbus RTU protocol through RS485 serial interface.

Equipped with axial fans, Scroll compressors and plate exchanger, even in the super silent version, these units can be completed by a hydraulic circuit with tank, with pump, with tank and pump or with AQUALOGIK technology.

The AQUALOGIK smart control system optimises the water set point and modulates the power supply voltage of the pump and the fans, thus making the use of the inertial tank superfluous. This obtains high energy efficiency, quiet operation and optimised dimensions and costs.

A wide range of accessories, factory fitted or supplied separately, complete the outstanding versatility and functionality of the series.

Are available as option the new EC Inverter fans with high available static pressure and efficiency for indoor ducted installation.

Cooling only units are compliant to the ErP 2021 Regulation for process cooling application; for comfort cooling application they are compliant if provided with EC or ECH accessory (EC Inverter fans).

Heat pump units are compliant to the ErP Regulation.

On request, units can be supplied with R452B (JWA 051÷172 S/G/P) or R454B (JWA 051÷172 S/L/P) refrigerant.

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tubes and aluminium finned coil.
- Evaporator AISI 316 stainless steel braze welded plates type with one circuit on the refrigerant side and one on the water side in 051÷131 models; with two independent circuits on the refrigerant side and one on the water side in 152÷172 models, complete with water differential pressure switch. On the Heat Pump units it is always installed an antifreeze heater.
- R410A refrigerant. On request R452B or R454B refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors and thermocontacts for fans.
- On ST versions water circuit includes: INVERTER circulating pump, safety valve and expansion vessel.
- On ST versions Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C in cooling mode. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, an high/low pressure transducer on cooling circuit and an electrical heater on electrical board.
- Microprocessor control and regulation system (with AQUALOGIK technology on ST versions).

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers

SI Unit silencement

RFM Cooling circuit shut-off valve on

discharge line RFL Cooling circuit shut-off valve on

СТ Condensing control down to 0 °C

CC Condensing control down to -20 °C Low water temperature kit BT

EC EC Inverter fans ECH EC Inverter fans with high available

static pressure DS Desuperheater

RT Total heat recovery

ΤX Coil with pre-coated fins

SI Inertial tank

PS Single circulating pump

PD Double circulating pump

FΕ Antifreeze heater for evaporator

FΝ Antifreeze heater for pipes

FO Antifreeze heater for tank and pipes FG Antifreeze heater for single pump

and pipes FM Antifreeze heater for double pump

and pipes **FUM** Antifreeze heater for tank, single pump and pipes

FDM Antifreeze heater for tank, double

pump and pipes

SS Soft start IS Modbus RTU protocol, RS485 serial interface

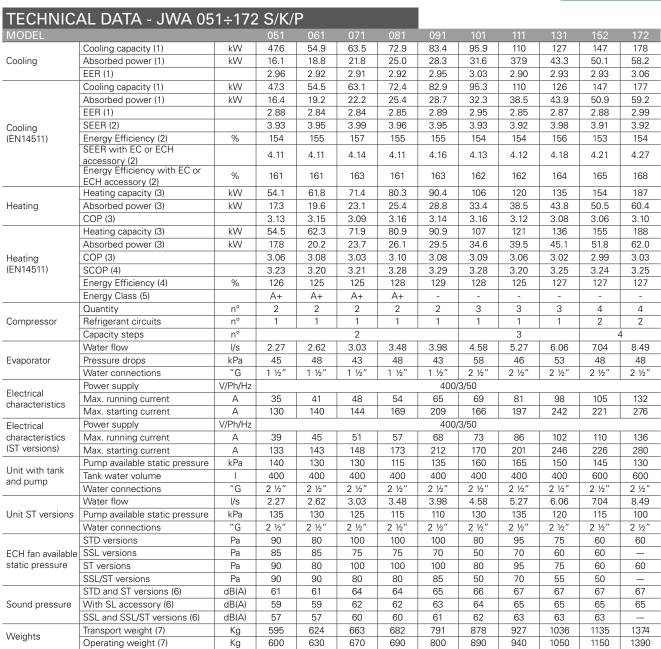
LOOSE ACCESSORIES:

with filter

MN High and low pressure gauges

CR Remote control panel

RP Coils protection metallic guards FΡ Coils protection metallic guards


AG Rubber shock absorbers

ΑM Spring shock absorbers

EUROVENT CERTIFIED PERFORMANCE

DIMENSIONS

Weights (ST versions)

Transport weight

Operating weight

МО	DEL		051	061	071	081	091	101	111	131	152	172
	STD-ST	mm	2350	2350	2350	2350	2350	2350	2350	2350	3550	3550
L	SSL-SSL/ST	mm	2350	2350	2350	2350	2350	2350	3550	3550	3550	
W	STD-SSL-ST-SSL/ST	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Н	STD-SSL-ST-SSL/ST	mm	1920	1920	1920	1920	2220	2220	2220	2220	2220	2220

639

645

678

685

697

705

806

815

898

910

947

960

1056

1070

1155

1170

1394

1410

610

615

Kg

Kg

CLEARANCE AREA

JWA 051÷172 S/K/P

300 800 800 1800

- 1. Chilled water from 12 to 7 $^{\circ}$ C, ambient air temperature 35 $^{\circ}$ C.
- Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- 3. Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b.
- Seasonal energy efficiency of heating at low temperature with average climatic conditions. According to EU Regulation n. 813/2013.
- Seasonal energy efficiency class of heating at low temperature with average climatic conditions. According to EU Regulation n. 811/2013..
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- Unit without tank and pump.
- N.B. Weights of SSL and WP versions are specified on technical brochure.

JWA/FC 051÷172 S/K/P

AIRCOOLED LIQUID CHILLERS FREE-COOLING WITH AXIAL FANS, SCROLL COMPRESSORS AND PLATE EXCHANGER.

The liquid Chillers of the JWA/FC 051÷172 S/K/P series, with R410A refrigerant, offer innovative technology for both domestic as well as industrial applications requiring the production of cooled water continuously year-round.

During the cold months, in the FREE-COOLING operation mode, the return liquid of the system is cooled directly by forced convection of outdoor air through the condensing coil, thus saving energy by not operating the unit's Scroll compressors. A 3-way valve system is controlled by the electronic microprocessor controller, allowing functioning in CHILLER, FREE-COOLING or MIXED (simultaneously CHILLER and FREE-COOLING) modes.

Are available as option the new EC Inverter fans with high available static pressure and efficiency for ducted installation.

The units are compliant to the ErP 2021 Regulation for process cooling application.

On request, units can be supplied with R452B (JWA/FC 051÷172 S/G/P) or R454B (JWA/FC 051÷172 S/L/P) refrigerant.

FROM 53 KW TO 174 KW.

VERSION

JWA/FC

Cooling only

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tubes and aluminium finned coil combined with FREE-COOLING coil.
- Evaporator AISI 316 stainless steel braze welded plates type with one circuit on the refrigerant side and one on the water side in 051÷131 models; with two independent circuits on the refrigerant side and one on the water side in 152÷172 models, complete with water differential pressure switch.
- Electronic high and low pressure gauges.
- R410A refrigerant. On request R452B or R454B refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors and thermocontacts for fans.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to $-20~^{\circ}\text{C}$. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, high and low pressure transducers on cooling circuit and an electrical heater on electrical board.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers

SL Unit silencement

RFM Cooling circuit shut-off valve on discharge line

RFL Cooling circuit shut-off valve on

liquid line

RT Low water temperature kit

FC EC Inverter fans

ECH EC Inverter fans with high available static pressure

Coil with pre-coated fins TX

Inertial tank

interface

PS Single circulating pump Double circulating pump PD

SS Soft start

SI

IS Modbus RTU protocol, RS485 serial

IST Modbus TCP/IP protocol, Ethernet port BACnet MSTP protocol, RS485 serial ISB

ISBT BACnet TCP/IP protocol, Ethernet port ISL LonWorks protocol, FTT-10 serial

interface

ISS SNMP protocol, Ethernet port

LOOSE ACCESSORIES:

MNHigh and low pressure gauges

CR Remote control panel

RP Coils protection metallic guards

AG Rubber shock absorbers

ΑM Spring shock absorbers

TECHNIC	AL DATA - JWA/FC	051÷	172 S	K/P								
MODEL			051	061	071	081	091	101	111	131	152	172
	Cooling capacity (1)	kW	52.7	59.5	68.1	76.7	85.7	99.1	114	130	151	174
Cooling	Absorbed power (1)	kW	18.1	20.3	23.3	26.1	29.3	36.8	42.2	48.4	54.4	64.9
	EER (1)		2.91	2.93	2.92	2.94	2.92	2.69	2.70	2.69	2.78	2.68
	Cooling capacity (1)	kW	52.0	58.8	67.3	75.9	84.9	98.2	113	129	150	172
Cooling	Absorbed power (1)	kW	18.8	21.0	24.1	26.9	30.1	37.7	43.5	49.9	55.7	66.4
(EN14511)	EER (1)		2.77	2.80	2.79	2.82	2.82	2.60	2.60	2.59	2.69	2.59
	SEPR (2)		5.11	5.13	5.12	5.14	5.12	5.11	5.09	5.08	5.15	5.14
Free-Cooling	Air temperature (3)	°C	2.1	1.3	0.0	-2.4	-3.5	1.0	0.0	-1.1	-3.0	-4.8
cycle	Absorbed power (3)	kW	2	2	2	2	2	6	6	6	8	8
	Quantity	n°	2	2	2	2	2	3	3	3	4	4
Compressor	Refrigerant circuits	n°	1	1	1	1	1	1	1	1	2	2
	Capacity steps	n°			2				3		4	4
	Water flow	l/s	2.72	3.07	3.52	3.96	4.43	5.09	5.88	6.70	7.78	8.93
Water circuit	Pressure drops	kPa	115	105	120	100	100	100	135	145	102	106
	Water connections	"G	2"	2"	2"	2"	2"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"
Electrical	Power supply	V/Ph/Hz					400,	/3/50				
characteristics	Max. running current	А	35	41	48	54	65	76	85	102	113	136
Giaracteristics	Max. starting current	А	130	140	144	169	209	173	201	246	229	280
Unit with tank	Pump available static pressure	kPa	120	125	100	115	100	190	145	125	150	125
and pump	Tank water volume		400	400	400	400	400	400	400	400	600	600
and pump	Water connections	"G	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"
ECH fan available static pressure		Pa	110	110	110	105	105	60	60	60	65	65
Sound pressure	STD version (4)	dB(A)	63	63	63	63	64	65	66	66	67	67
Journa pressure	With SL accessory (4)	dB(A)	61	61	60	60	62	63	64	64	65	65
Moights	Transport weight (5)	Kg	923	932	951	980	999	1308	1317	1350	1472	1510
vveigins	Operating weight (5)			980	1000	1030	1050	1390	1400	1435	1560	1600

DIM	I = NI	c	אוכ
שווע	$I \subseteq I \setminus I$	JIC	סמול

MODEL			051	061	071	081	091	101	111	131	152	172
L	STD	mm	3550	3550	3550	3550	3550	4700	4700	4700	4700	4700
W	STD	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Н	STD	mm	2220	2220	2220	2220	2220	2235	2235	2235	2235	2235

CLEARANCE AREA

JWA/FC 051÷172 S/K/P 300 800 800 1800

- 1. Chilled water (with ethylene glycol at 30%) from 15 to 10 °C, ambient air temperature 35 °C.
- 2. Seasonal energy efficiency of process cooling at high temperature. According to EU Regulation n. 2016/2281.
- 3. Ambient air temperature at which the cooling capacity indicated in point (1) is reached.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
 Unit without tank and pump. 4.
- 5.

FROM 49 KW TO 179 KW.

VERSION

JWA

Cooling only

JWA/WP

Reversible Heat Pump

JWA/SSL

Super silenced cooling only

JWA/WP/SSL

Super silenced reversible Heat Pump

JWA/ST

Cooling only with AQUALOGIK technology

JWA/WP/ST

Reversible Heat Pump with AQUALOGIK technology

JWA/SSL/ST

Super silenced cooling only with AQUALOGIK technology

JWA/WP/SSL/ST

Super silenced reversible Heat Pump with AQUALOGIK technology

JWA 051÷172 S/K

AIRCOOLED LIQUID CHILLERS AND HEAT PUMPS WITH AXIAL FANS, SCROLL COMPRESSORS AND SHELL AND TUBE EXCHANGER.

The liquid Chillers and Heat Pumps of the JWA 051÷172 S/K series, with R410A refrigerant, are designed for medium-sized service sector or industrial ambients.

They are used, combined with Fan Coil units, for the air conditioning of the rooms or to remove the heat developed during industrial processes. They can be supplied with Modbus RTU protocol through RS485 serial interface.

Equipped with axial fans, Scroll compressors and shell and tube exchanger, even in the super silent version, these units can be completed by a hydraulic circuit with tank, with pump, with tank and pump or with AQUALOGIK technology.

The AQUALOGIK smart control system optimises the water set point and modulates the power supply voltage of the pump and the fans, thus making the use of the inertial tank superfluous. This obtains high energy efficiency, guiet operation and optimised dimensions and costs.

A wide range of accessories, factory fitted or supplied separately, complete the outstanding versatility and functionality of the series.

Are available as option the new EC Inverter fans with high available static pressure and efficiency for indoor ducted installation.

Cooling only units are compliant to the ErP 2021 Regulation for process cooling application; for comfort cooling application they are compliant if provided with EC or ECH accessory (EC Inverter fans).

Heat pump units are compliant to the ErP Regulation.

On request, units can be supplied with R452B (JWA 051÷172 S/G) or R454B (JWA 051÷172 S/L) refrigerant.

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tubes and aluminium finned coil.
- Shell and tube type evaporator with one circuit on the refrigerant side and one on the water side in 051÷131 models; with two independent circuits on the refrigerant side and one on the water side in 152÷172 models, complete with water differential pressure switch.
- R410A refrigerant. On request R452B or R454B refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors and thermocontacts for fans.
- On ST versions water circuit includes: INVERTER circulating pump, safety valve and expansion vessel.
- On ST versions Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C in cooling mode. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, an high/low pressure transducer on cooling circuit and an electrical heater on electrical board.
- Microprocessor control and regulation system (with AQUALOGIK technology on ST versions).

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers Unit silencement

SL RFM Cooling circuit shut-off valve on discharge line

RFL Cooling circuit shut-off valve on liquid line

CT Condensing control down to 0 °C CC Condensing control down to -20 °C

Low water temperature kit BT

EC EC Inverter fans

ECH EC Inverter fans with high available static pressure

HR Desuperheater HRT/S Total heat recovery in series Total heat recovery in parallel ΤX Coil with pre-coated fins

External water connections ΕW

SP Inertial tank

ΡU Single circulating pump PD

Double circulating pump SPU Inertial tank and single circulating pump

SPD Inertial tank and double circulating pump

FΕ Antifreeze heater for evaporator

FΝ Antifreeze heater for pipes

FQ Antifreeze heater on evaporator/tank and pipes

FΖ Antifreeze heater for evaporator, single pump and pipes

Antifreeze heater for evaporator, FΗ double pump and pipes

FU Antifreeze heater for evaporator/tank, single pump and pipes

FD Antifreeze heater for evaporator/tank, double pump and pipes

SS Soft start

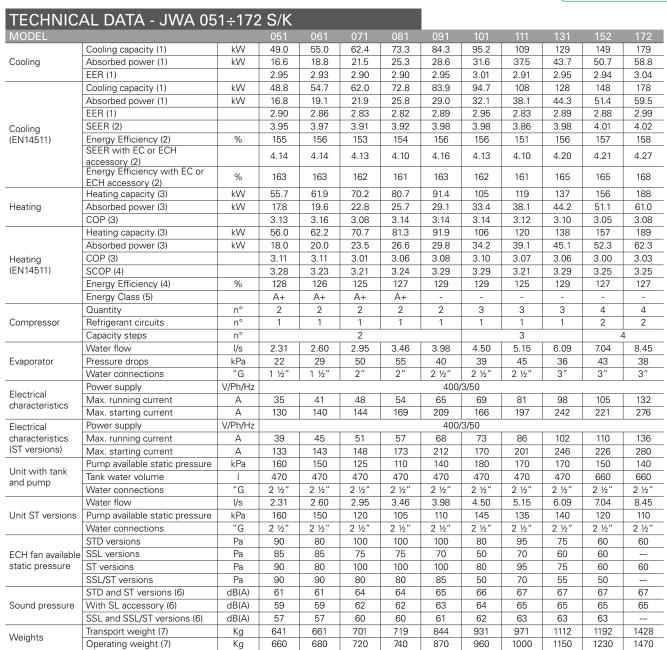
IS Modbus RTU protocol, RS485 serial interface

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel

RP Coils protection metallic guards FΡ Coils protection metallic guards


with filter AG Rubber shock absorbers

Spring shock absorbers ΑM FL Flow switch

46

EUROVENT CERTIFIED PERFORMANCE

DIMENSIONS

Weights (ST versions)

Transport weight

Operating weight

MOD	DEL		051	061	071	081	091	101	111	131	152	172
	STD-ST	mm	2350	2350	2350	2350	2350	2350	2350	2350	3550	3550
L	SSL-SSL/ST	mm	2350	2350	2350	2350	2350	2350	3550	3550	3550	
W	STD-SSL-ST-SSL/ST	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Н	STD-SSL-ST-SSL/ST	mm	1920	1920	1920	1920	2220	2220	2220	2220	2220	2220

675

690

715

730

735

750

860

875

950

970

990

1010

1130

1150

1210

1230

1450

1470

655

660

Kg

Kg

CLEARANCE AREA

JWA 051÷172 S/K

300 800 800 1800

- 1. Chilled water from 12 to 7 °C, ambient air temperature 35 °C.
- Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- 3. Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b.
- Seasonal energy efficiency of heating at low temperature with average climatic conditions. According to EU Regulation n. 813/2013.
- Seasonal energy efficiency class of heating at low temperature with average climatic conditions. According to EU Regulation n. 811/2013..
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- Unit without tank and pump.
- $\ensuremath{\mathsf{N.B.}}$ Weights of SSL and WP versions are specified on technical brochure.

JWA 081÷211 VV/H/P/A

A CLASS ENERGY EFFICIENCY AIRCOOLED LIQUID CHILLERS WITH AXIAL FANS, (INVERTER) SCREW COMPRESSOR AND PLATE EXCHANGER.

The JWA 081÷211 VV/H/P/A units in A CLASS energy efficiency, with HFO-R1234ze refrigerant, are designed to provide an effective solution to highly selective system needs. The latest generation refrigerant HFO-R1234ze, with GWP<1 (Global Warming Potential), is the most environmentally sustainable refrigerant on the market, and meets the strictest international environmental regulations. The innovative heat exchangers, traditional or Microchannel, the Screw compressor and the new design optimized in every detail ensure the reach of the highest efficiency. Furthermore, accessories as the Inverter control on Screw compressor, fans and on circulating pumps (EC Inverter) are also available for getting the highest efficiency at part load. The super silenced versions, obtained through acoustic insulation on compressor and on whole structure and wider exchangers, are particularly suitable for installations where extremely quiet operation are essential for the ideal execution of the

Are available as option the new EC Inverter fans with high available static pressure and efficiency for indoor ducted installation.

The units are compliant to the ErP 2021 Regulation for process cooling application; for comfort cooling application they are compliant if provided with EC or ECH accessory (EC Inverter fans).

FROM 79 KW TO 208 KW.

idroinverter

VERSION

JWA

Cooling only

JWA/MC

Cooling only with MICROCHANNEL condensing coils

JWA/SSL

Super silenced cooling only

JWA/MC/SSL

Super silenced cooling only with MICROCHANNEL condensing coils

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Screw compressor with built-in oil separator, suction filter, crankcase heater, oil sight glass, thermal protection and stepless capacity steps.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tube and aluminum finned coils or aluminium MICROCHANNEL
- Evaporator AISI 316 stainless steel braze welded plates type with one circuit on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- HFO-R1234ze refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relay for compressor and thermocontacts for fans.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to 0 °C. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation and high and low pressure transducers on cooling circuit.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers

SL Unit silencement CC Condensing control down to -20 °C BT

Low water temperature kit EC EC Inverter fans

ECH EC Inverter fans with high available static pressure

RT Total heat recovery ΤX Coil with pre-coated fins TXB Coil with epoxy treatment

SI Inertial tank PS Single circulating pump

PSI Inverter single circulating pump PD Double circulating pump PDI Inverter double circulating pump

FΕ Antifreeze heater for evaporator FΝ Antifreeze heater for pipes

FO Antifreeze heater for tank and pipes FG Antifreeze heater for single pump and

pipes FΜ Antifreeze heater for double pump and

pipes **FUM** Antifreeze heater for tank, single pump and pipes

FDM Antifreeze heater for tank, double

pump and pipes IQ Inverter on one compressor

SS Soft start

 WM Web Monitoring - Wireless remote monitoring (GPRS/EDGE/3G/TCP-IP) IS Modbus RTU protocol, RS485 serial

interface

Modbus TCP/IP protocol, Ethernet port IST ISB BACnet MSTP protocol, RS485 serial

ISBT BACnet TCP/IP protocol, Ethernet port

LonWorks protocol, FTT-10 serial ISL interface

ISS SNMP protocol, Ethernet port IAV Remote set-point, 0-10 V signal

IAA Remote set-point, 4-20 mA signal IAS Remote signal for second set-point

IDL Demand limit from digital input

CP Potential free contacts

LOOSE ACCESSORIES:

MNHigh and low pressure gauges CR Remote control panel

RP Coils protection metallic guards FP

Coils protection metallic guards with AG Rubber shock absorbers

AM Spring shock absorbers

TECHNICAL DATA - JWA 081÷211 VV/H/P/A kW 78.6 101 163 Cooling capacity (1) 130 208 Cooling STD 32.3 49.6 66.6 Absorbed power (1) kW 23.9 39.7 version EER (1) 3.29 3.13 3.27 3.29 3.12 Cooling capacity (1) kW 78.5 101 130 163 208 Absorbed power (1) kW 23.9 32 4 39.8 498 66.9 EER (1) 3.11 3.28 3.12 3.27 3.27 Cooling SEER (2) 4.09 3.95 4.02 3.93 4.06 STD version Energy Efficiency (2) % 161 155 154 159 158 (EN14511) SEER with EC or ECH 4.68 4.42 4.47 4.52 4.47 accessory (2) Energy Efficiency with EC or % 184 174 176 178 176 ECH accessory (2) kW 78.6 101 130 163 208 Cooling capacity (1) Cooling MC Absorbed power (1) kW 23.5 31.8 39.1 48.9 65.9 version EER (1) 3 34 3 18 3 32 3 33 3 16 Cooling capacity (1) kW 78.5 101 130 163 208 Absorbed power (1) kW 23.5 31.9 39.2 49.1 66.2 EER (1) 3.34 3.17 3.32 3.32 3.14 Cooling SEER (2) 4.10 3.97 3.93 4.06 4.02 MC version Energy Efficiency (2) % 161 156 154 159 158 (EN14511) SEER with EC or ECH 4.69 4.43 4.48 4.53 4.48 accessory (2) Energy Efficiency with EC or % 185 174 176 178 176 ECH accessory (2) n° Quantity 1 1 1 1 1 Compressor Refrigerant circuits n° 1 1 1 1 1 Capacity steps n° Stepless 3.76 4.83 7.79 9 94 Water flow I/s 6.21 Evaporator Pressure drops kPa 9 11 11 12 12 "G 2 1/2 2 1/2 2 1/2 2 1/2 Water connections 2 1/2 Power supply V/Ph/Hz 400/3/50 Electrical Max. running current 101 100 133 152 214 Α characteristics Max. starting current Α 180 190 279 328 435 Pump available static pressure kPa 145 205 190 180 150 Unit with tank Tank water volume 600 600 600 600 600 and pump Water connections "G 2 1/2 2 1/2 2 1/2 2 1/2 2 1/2 Pa STD versions 110 110 110 110 110 ECH fan available SSL versions Pa 110 110 110 110 110 static pressure MC versions Pa 110 110 110 110 110 MC/SSL versions Pa 110 110 110 110 110 STD version (3) dB(A) 74 74 75 75 76 Sound pressure With SL accessory (3) dB(A) 71 71 72 72 73 SSL version (3) dB(A) 66 66 67 68 69 Transport weight (4) Kg 1281 1441 1888 1998 2189 Weights Operating weight (4) 1300 1480 1930 2050 2260 Kg

DIMENSIONS

MOD	DEL		081	101	131	171	211
L	STD-SSL-MC-MC/SSL	mm	3550	3550	4700	4700	4700
W	STD-SSL-MC-MC/SSL	mm	1100	1100	1100	1100	1100
Н	STD-SSL-MC-MC/SSL	mm	2200	2200	2200	2200	2200

CLEARANCE AREA

JWA 081÷211 VV/H/P/A 300 | 800 | 800 | 1800

- 1. Chilled water from 12 to 7 $^{\circ}$ C, ambient air temperature 35 $^{\circ}$ C.
- Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- Unit without tank and pump.
- N.B. Weights of SSL versions are specified on technical brochure.
- N.B. Data of MC versions are specified on technical brochure.

*idro*inverter

JWA/FC 081÷171 VV/H/P

AIRCOOLED LIQUID CHILLERS FREE-COOLING WITH AXIAL FANS, (INVERTER) SCREW COMPRESSOR AND PLATE EXCHANGER.

The liquid Chillers of the JWA/FC 081÷171 VV/H/P series, with HFO-R1234ze refrigerant, offer innovative technology to meet the needs of large systems for both domestic as well as industrial applications requiring the production of cooled water continuously year-round. The latest generation refrigerant HFO-R1234ze, with GWP<1 (Global Warming Potential), is the most environmentally sustainable refrigerant on the market, and meets the strictest international environmental regulations. During the cold months, in FREE-COOLING operating mode, the liquid returning from the system is cooled directly by forced convection of outdoor air through the condensing coil, thus saving energy by not operating the unit's Screw compressor. A 3-Way valve system is controlled by the electronic microprocessor controller, allowing functioning in CHILLER, FREE-COOLING or MIXED (simultaneously CHILLER and FREE-COOLING) modes.

Are available as option the new EC Inverter fans with high available static pressure and efficiency for indoor ducted installation.

The units are compliant to the ErP 2021 Regulation for process cooling application.

FROM 82 KW TO 170 KW.

VERSION

JWA/FC

Cooling only

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Screw compressor with built-in oil separator, suction filter, crankcase heater, oil sight glass, thermal protection and stepless capacity steps.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tubes and aluminium finned coils combined with FREE-COOLING
- Evaporator AISI 316 stainless steel braze welded plates type with one circuit on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- HFO-R1234ze refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relay for compressor and thermocontacts for fans.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, high and low pressure transducers on cooling circuit and an electrical heater on electrical board.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

Automatic circuit breakers IM

SL Unit silencement

BT Low water temperature kit

FC. EC Inverter fans

ECH EC Inverter fans with high available static pressure

RT Total heat recovery

TX Coil with pre-coated fins

SI Inertial tank

PS Single circulating pump

PSI Inverter single circulating pump

PD Double circulating pump

PDI Inverter double circulating pump IQ Inverter on one compressor

SS Soft start

WM Web Monitoring - Wireless remote monitoring (GPRS/EDGE/3G/TCP-IP)

IS Modbus RTU protocol, RS485 serial interface

IST Modbus TCP/IP protocol, Ethernet port

BACnet MSTP protocol, RS485 serial ISB interface

ISBT BACnet TCP/IP protocol, Ethernet port

LonWorks protocol, FTT-10 serial ISL

ISS SNMP protocol, Ethernet port IAV/ Remote set-point, 0-10 V signal

IAA Remote set-point, 4-20 mA signal IAS Remote signal for second set-point activation

IDL Demand limit from digital input

CP Potential free contacts

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel

Coils protection metallic guards RP

AG Rubber shock absorbers AM Spring shock absorbers

TECHNIC	al data - Jwa/FC	081÷	171 VV/H/P			
MODEL			081	101	131	171
	Cooling capacity (1)	kW	81.7	110	140	170
Cooling	Absorbed power (1)	kW	26.8	36.3	44.1	53.5
	EER (1)		3.05	3.03	3.17	3.18
	Cooling capacity (1)	kW	81.5	110	140	171
Cooling	Absorbed power (1)	kW	27.1	36.5	44.8	53.8
EN14511)	EER (1)		3.01	3.01	3.13	3.18
	SEPR (2)		6.86	7.33	6.89	6.58
Free-Cooling cycle	Air temperature (3)	°C	1	-2	0	-3
	Absorbed power (3)	kW	6	6	8	8
Compressor	Quantity	n°	1	1	1	1
	Refrigerant circuits	n°	1	1	1	1
	Capacity steps	n°		Ste	pless	
	Water flow	l/s	4.44	6.20	7.60	8.53
Water circuit	Pressure drops	kPa	36	108	80	113
	Water connections	DN	2 1/2"	2 1/2"	2 1/2"	2 1/2"
	Power supply	V/Ph/Hz	400/3/50			
Electrical characteristics	Max. running current	Α	105	109	137	156
Sidiacteristics	Max. starting current	А	184	200	285	334
1.50 201 4 1	Pump available static pressure	kPa	180	110	125	80
Jnit with tank and pump	Tank water volume	I	400	400	400	400
	Water connections	DN	2 1/2"	2 1/2"	2 1/2"	2 1/2"
ECH fan available static pressure		Pa	110	110	110	105
Carrad arasarra	STD version (4)	dB(A)	74	74	75	75
Sound pressure	With SL accessory (4)	dB(A)	71	71	72	72
Majahta	Transport weight (5)	Kg	1503	1677	2093	2222
Weights	Operating weight (5)	Kg	1550	1760	2180	2320

DIMENSIONS

MODEL			081	101	131	171
L	STD	mm	3550	4700	4700	4700
W	STD	mm	1100	1100	1100	1100
Н	STD	mm	2200	2200	2200	2200

CLEARANCE AREA

JWA/FC 081÷171 VV/H/P 300 800 800 1800

- 1. Chilled water (with ethylene glycol at 30%) from 15 to 10 °C, ambient air temperature 35 °C.
- 2. Seasonal energy efficiency of process cooling at high temperature. According to EU Regulation n. 2016/2281.
- 3. Ambient air temperature at which the cooling capacity indicated in point (1) is reached.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744. Unit without tank and pump. 4.
- 5.

JWA 081÷211 VV/H/A

A CLASS ENERGY EFFICIENCY AIRCOOLED LIQUID CHILLERS WITH AXIAL FANS, (INVERTER) SCREW COMPRESSOR AND SHELL AND TUBE EXCHANGER.

The JWA 081÷211 VV/H/A units in A CLASS energy efficiency, with HFO-R1234ze refrigerant, are designed to provide an effective solution to highly selective system needs. The latest generation refrigerant HFO-R1234ze, with GWP<1 (Global Warming Potential), is the most environmentally sustainable refrigerant on the market, and meets the strictest international environmental regulations. The innovative heat exchangers, traditional or Microchannel, the Screw compressor and the new design optimized in every detail ensure the reach of the highest efficiency. Furthermore, accessories as the Inverter control on Screw compressor, fans and on circulating pumps (EC Inverter) are also available for getting the highest efficiency at part load. The super silenced versions, obtained through acoustic insulation on compressor and on whole structure and wider exchangers, are particularly suitable for installations where extremely quiet operation are essential for the ideal execution of the

Are available as option the new EC Inverter fans with high available static pressure and efficiency for indoor ducted installation.

The units are compliant to the ErP 2021 Regulation for process cooling application; for comfort cooling application they are compliant if provided with EC or ECH accessory (EC Inverter fans).

FROM 79 KW TO 211 KW.

idroinverter

VERSION

JWA

Cooling only

JWA/MC

Cooling only with MICROCHANNEL condensing coils

JWA/SSL

Super silenced cooling only

JWA/MC/SSL

Super silenced cooling only with MICROCHANNEL condensing coils

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Screw compressor with built-in oil separator, suction filter, crankcase heater, oil sight glass, thermal protection and stepless capacity steps.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tube and aluminum finned coils or aluminium MICROCHANNEL coils.
- Shell and tube evaporator with one independent circuit on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- HFO-R1234ze refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relay for compressor and thermocontacts for fans.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to 0 °C. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation and high and low pressure transducers on cooling circuit.

ISB

ISBT

ISI

ISS

IAV/

IAA

IAS

IDL

Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers

SL Unit silencement CC Condensing control down to -20 °C

BT Low water temperature kit

EC EC Inverter fans

ECH EC Inverter fans with high available static pressure

HRT/S Total heat recovery in series

HRT/P Total heat recovery in parallel TX

Coil with pre-coated fins TXB Coil with epoxy treatment EW External water connections

SP Inertial tank

PH Single circulating pump

PUI Inverter single circulating pump

PD Double circulating pump

PDI Inverter double circulating pump SPU Inertial tank and single circulating

pump+

SPUI Inertial tank and Inverter single circulating pump

SPD Inertial tank and double circulating pump

SPDI Inertial tank and Inverter double circulating pump

FΕ Antifreeze heater for evaporator

FΧ Antifreeze heater for evaporator and

FQ Antifreeze heater on evaporator/tank and pipes

FΖ Antifreeze heater for evaporator, single pump and pipes

FΗ Antifreeze heater for evaporator, double pump and pipes

FU Antifreeze heater for evaporator/tank, single pump and pipes

FD Antifreeze heater for evaporator/tank, double pump and pipes

IQ Inverter on one compressor

IST

SS Soft start Web Monitoring - Wireless remote WM monitoring (GPRS/EDGE/3G/TCP-IP)

IS Modbus RTU protocol, RS485 serial

Modbus TCP/IP protocol, Ethernet port

CP Potential free contacts

LOOSE ACCESSORIES:

activation

interface

interface

MN High and low pressure gauges

CR Remote control panel

RP Coils protection metallic guards FΡ Coils protection metallic guards with

BACnet MSTP protocol, RS485 serial

BACnet TCP/IP protocol, Ethernet port

LonWorks protocol, FTT-10 serial

SNMP protocol, Ethernet port

Remote set-point, 0-10 V signal

Demand limit from digital input

Remote set-point, 4-20 mA signal

Remote signal for second set-point

AG Rubber shock absorbers Spring shock absorbers AM

FL Flow switch

filter

TECHNIC	AL DATA - JWA 08	1÷211	VV/H/A				
MODEL			081	101	131	171	211
O 1: OTD	Cooling capacity (1)	kW	78.7	99.0	129	165	211
Cooling STD version	Absorbed power (1)	kW	23.6	30.8	39.0	48.9	66.7
version	EER (1)		3.33	3.21	3.31	3.37	3.16
	Cooling capacity (1)	kW	78.8	98.9	129	164	211
	Absorbed power (1)	kW	23.4	31.0	39.3	49.6	67.3
	EER (1)		3.37	3.19	3.28	3.31	3.14
Cooling	SEER (2)		4.17	3.99	3.99	4.08	3.99
STD version	Energy Efficiency (2)	%	164	157	157	160	157
(EN14511)	SEER with EC or ECH accessory (2)		4.73	4.53	4.53	4.63	4.53
	Energy Efficiency with EC or ECH accessory (2)	%	186	178	178	182	178
0 1: 140	Cooling capacity (1)	kW	78.7	99.0	129	165	211
Cooling MC version	Absorbed power (1)	kW	23.2	30.3	38.4	48.2	66.0
ACI 21011	EER (1)		3.39	3.27	3.36	3.42	3.20
	Cooling capacity (1)	kW	78.8	98.9	129	164	211
	Absorbed power (1)	kW	23.0	30.5	38.7	48.9	66.6
	EER (1)		3.43	3.24	3.33	3.35	3.17
Cooling	SEER (2)		4.18	4.00	4.00	4.09	4.00
MC version	Energy Efficiency (2)	%	164	157	157	161	157
(EN14511)	SEER with EC or ECH		4.74	4.54	4.54	4.64	4.54
	accessory (2)		4.74	4.04	4.54	4.04	4.04
	Energy Efficiency with EC or ECH accessory (2)	%	187	179	179	183	179
	Quantity	n°	1	1	1	1	1
Compressor	Refrigerant circuits	n°	1	1	1	1	1
	Capacity steps	n°			Stepless		
	Water flow	l/s	3.76	4.73	6.16	7.88	10.08
Evaporator	Pressure drops	kPa	21	20	23	44	31
	Water connections	"G	2 1/2"	2 1/2"	2 1/2"	2 1/2"	2 1/2"
Electrical	Power supply	V/Ph/Hz			400/3/50		
characteristics	Max. running current	А	101	100	133	152	214
0.10.100	Max. starting current	Α	180	190	279	328	435
Unit with tank	Pump available static pressure	kPa	140	200	180	150	130
and pump	Tank water volume	1	660	660	660	660	660
ана раттр	Water connections	"G	2 1/2"	2 1/2"	2 1/2"	2 1/2"	2 1/2"
	STD versions	Pa	110	110	110	110	110
ECH fan available	SSL versions	Pa	110	110	110	110	110
static pressure	MC versions	Pa	110	110	110	110	110
	MC/SSL versions	Pa	110	110	110	110	110
	STD version (3)	dB(A)	74	74	75	75	76
Sound pressure	With SL accessory (3)	dB(A)	71	71	72	72	73
	SSL version (3)	dB(A)	66	66	67	68	69
Weights	Transport weight (4)	Kg	1361	1465	2005	2073	2367
v veigints	Operating weight (4)	Kg	1380	1490	2040	2120	2420

DIMENSIONS

MOD	EL		081	101	131	171	211
L	STD-SSL-MC-MC/SSL	mm	3550	3550	4700	4700	4700
W	STD-SSL-MC-MC/SSL	mm	1100	1100	1100	1100	1100
Н	STD-SSL-MC-MC/SSL	mm	2200	2200	2200	2200	2200

CLEARANCE AREA

JWA 081÷211 VV/H/A 300 800 800 1800

- Chilled water from 12 to 7 °C, ambient air temperature 35 °C.
- 2. Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- 3. Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- Unit without tank and pump.
 N.B. Weights of SSL versions are specified on technical brochure.
- N.B. Data of MC versions are specified on technical brochure.

A CLASS ENERGY EFFICIENCY AIRCOOLED DEDICATED HEAT PUMPS WITH DOMESTIC HOT WATER PRODUCTION, AXIAL FANS, SCROLL COMPRESSOR, PLATE EXCHANGER AND HYDRONIC KIT.

MIDYLINE is the line of Heat Pumps dedicated to hot water production up to 60 °C and operations up to -20 °C external air temperature, with Scroll compressors, axial fans and integrated hydronic kit. The unit, featuring A CLASS energy efficiency, is designed to singly handle winter heating, summer air conditioning and the production of high temperature hot water, making use of the electrical energy and heat accumulated in the clean air source, free and infinite, which can also transfer heat to homes. Flexibility is the main feature of MIDYLINE series, which is also combined with heating units and managed by the innovative, intelligent AQUALOGIK control system, optimizing the water set-point and regulating power supply voltage to the pump and fans, making the use of an inertial tank unnecessary. This results in performance with elevated energy efficiency, silent functioning, optimized dimensions and costs. MIDYLINE is also able to operate in extreme conditions where the external air temperature is very low, as well as intelligently managing integrated elements such as furnaces and electrical heaters. Based on the external air sensor, the microprocessor activates the single integration elements in the system.

The units are compliant to the ErP Regulation.

MIDYLINE

FROM 11 KW TO 23 KW.

VERSION

JWA/ML/ST

Heat pump with AQUALOGIK technology

JWA/ML/WP/ST

Reversible heat pump with AQUALOGIK technology

FEATURES

- Structure with supporting frame, in peraluman, galvanized sheet and with rubber shock absorbers on the frame.
- Scroll compressor with internal overheat protection and crankcase heater.
- Axial fans with low ventilation and special wing profile, directly coupled to external rotor motors.
- Condenser made of copper tube and aluminium finned coil, complete with drain pan.
- Evaporator AISI 316 stainless steel braze welded plates type, completed with water differential pressure switch and antifreeze heater.
- R407C refrigerant.
- Electrical board includes: main switch with door lock device, fuses and compressor remote control switch.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C in cooling mode. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, an high/low pressure transducer on cooling circuit and an electrical heater on electrical board.
- Functioning in heating mode with outside air temperature down to -20 °C.
- The production of hot water up to 60 °C is reachable with outside air temperature down to -15 °C. With outside air temperature of -20 °C the reachable production of hot water is up to 45 °C.
- Water circuit includes variable speed circulating pump, safety valve, gauge and expansion vessel.
- Microprocessor control and regulation system with AQUALOGIK technology.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

EΗ Supplementary electrical heater KC Gas burner integration kit ΤX Coil with pre-coated fins

LOOSE ACCESSORIES:

Storage tank for domestic hot water production

CR Remote control panel

IS Modbus RTU protocol, RS485 serial

RP Coils protection metallic guards

TECHNIC	AL DATA - JWA/M	L/ST 1	1÷18 S/Z/P				
MODEL			11*	14*	11**	14**	18
	Heating capacity (1)	kW	11.5	16.0	11.5	16.0	22.5
	Absorbed power (1)	kW	3.2	4.6	3.2	4.6	6.5
Ula adia a	COP (1)		3.59	3.48	3.59	3.48	3.46
Heating	Heating capacity (2)	kW	11.3	15.8	11.3	15.8	22.4
	Absorbed power (2)	kW	2.7	3.8	2.7	3.8	5.4
	COP (2)		4.19	4.16	4.19	4.16	4.15
	Heating capacity (1)	kW	11.9	16.4	11.9	16.4	23.0
	Absorbed power (1)	kW	3.2	4.6	3.2	4.6	6.5
Heating	COP (1)		3.72	3.57	3.72	3.57	3.54
EN14511)	SCOP (3)		4.71	4.95	4.71	4.95	5.12
	Energy Efficiency (3)	%	185	195	185	195	202
	Energy Class (4)		A++	A++	A++	A++	A+
	Cooling capacity (5)	kW	7.3	10.5	7.3	10.5	16.0
	Absorbed power (5)	kW	2.5	3.6	2.5	3.6	5.2
o .:	EER (6)		2.92	2.92	2.92	2.92	3.08
Cooling	Cooling capacity (6)	kW	10.8	15.5	10.8	15.5	21.2
	Absorbed power (6)	kW	2.7	4.0	2.7	4.0	6.1
	EER (6)		4.00	3.88	4.00	3.88	3.48
	Cooling capacity (5)	kW	7.0	10.2	7.0	10.2	15.6
Cooling EN14511)	Absorbed power (5)	kW	2.8	3.9	2.8	3.9	5.6
EN 14511)	EER (5)		2.50	2.62	2.50	2.62	2.79
Compressor	Quantity	n°	1	1	1	1	1
	Power supply	V/Ph/Hz			230/1/50		
Supplementary	Heating capacity	kW	4/6	4/6	4/6	4/6	4/6
electrical heater	Absorbed current	Α	18/26	18/26	18/26	18/26	18/26
	Steps	n°	2	2	2	2	2
	Power supply	V/Ph/Hz	230/	1/50		400/3+N/50	
Electrical	Max. running current	Α	26	35	13	15	19
characteristics	Max. starting current	Α	102	165	45	69	106
	Water flow	l/s	0.54	0.75	0.54	0.75	1.07
Nater circuit	Pump available static pressure	kPa	231	185	231	185	156
	Water connections	"G	1"	1"	1"	1"	1"
Sound pressure (7)	dB(A)	52	52	52	52	52
	Transport weight	Kg	205	208	205	208	210
Weights	Operating weight	Kg	209	212	209	212	214

DIMENSIONS

MODEL			11*	14*	11**	14**	18
L	STD	mm	1160	1160	1160	1160	1160
W	STD	mm	500	500	500	500	500
Н	STD	mm	1270	1270	1270	1270	1270

CLEARANCE AREA

JWA/ML/ST 11÷18 S/Z/P 200 200 800 200

- Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b. Heated water from 30 to 35 °C, ambient air temperature 7 °C d.b./6 °C w.b. Seasonal energy efficiency of heating at low temperature with average climatic 3.
- conditions. According to EU Regulation n. 813/2013.

 Seasonal energy efficiency class of heating at low temperature with average climatic conditions. According to EU Regulation n. 811/2013.

 Chilled water from 12 to 7 °C, ambient air temperature 35 °C.

 Chilled water from 23 to 18 °C, ambient air temperature 35 °C. 4.
- 5.
- 6. 7. Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of WP version are specified on technical brochure. N.B. * = Single phase N.B. ** = Three phase

MIDYLINE

JWA/ML/ST 24÷40 S/Z/P

A CLASS ENERGY EFFICIENCY AIRCOOLED DEDICATED HEAT PUMPS WITH DOMESTIC HOT WATER PRODUCTION, AXIAL FANS, SCROLL COMPRESSOR, PLATE EXCHANGER AND HYDRONIC KIT.

MIDYLINE, featuring A CLASS energy efficiency, is the innovative series of Heat Pumps dedicated to **hot water production up to 60 °C** and operation up to -20 °C external air temperature, with Scroll compressors, axial fans and integrated hydronic kit. The unit, designed to originate and control - throughout the year - the best comfort conditions in rooms with a high rate of daily attendance, such as enclosed areas destined to the activities of the service sector, autonomously handles winter heating, summer air conditioning and the production of high temperature sanitary hot water. The MIDYLINE series, designed with an extremely compact structure for simple installation operations, uses only the electric energy and the heat accumulated in the air, to transfer heat to the rooms, thus allowing considerable energy savings, a high rate of reliability and the shortest start-up times. Flexibility is the main feature of the MIDYLINE series, which is indeed combined with terminal units and managed by the innovative, intelligent AQUALOGIK control and optimization system. This makes the use of an inertial tank unnecessary and it guarantees performances with elevated energy efficiency and silent functioning.

The units are compliant to the ErP Regulation.

FROM 30 KW TO 53 KW.

VERSION

JWA/ML/ST

Heat pump with AQUALOGIK technology

JWA/ML/WP/ST

Reversible heat pump with AQUALOGIK technology

FEATURES

- Structure with supporting frame, in peraluman and galvanized sheet.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Axial fans with low ventilation and special wing profile, directly coupled to external rotor motors.
- Condenser made of copper tubes and aluminium finned coils.
- Evaporator AISI 316 stainless steel braze welded plates type, completed with water differential pressure switch and antifreeze heater.
- R407C refrigerant.
- Electrical board includes: main switch with door lock device, fuses and compressor remote control switch.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C in cooling mode. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, an high/low pressure transducer on cooling circuit and an electrical heater on electrical board.
- Functioning in heating mode with outside air temperature down to -20 °C.
- The production of hot water up to 60 °C is reachable with outside air temperature down to -15 °C. With outside air temperature of -20 °C the reachable production of hot water is up to 45 °C.
- Water circuit includes variable speed circulating pump, safety valve, gauge and expansion vessel.
- Microprocessor control and regulation system with AQUALOGIK technology.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

EΗ Supplementary electrical heater Gas burner integration kit KC TX Coil with pre-coated fins

LOOSE ACCESSORIES:

HW Storage tank for domestic hot water production

CR Remote control panel

IS Modbus RTU protocol, RS485 serial

RP Coils protection metallic guards AG Rubber shock absorbers

TECHNIC	AL DATA - JWA/MI	L/ST 2	4÷40 S/Z/P			
MODEL			24	27	40	
	Heating capacity (1)	kW	30.7	40.2	52.6	
	Absorbed power (1)	kW	8.0	10.9	13.6	
	COP (1)		3.84	3.69	3.87	
Heating	Heating capacity (2)	kW	29.8	40.0	50.2	
	Absorbed power (2)	kW	6.7	9.2	11.4	
	COP (2)		4.45	4.35	4.40	
	Heating capacity (1)	kW	31.4	41.1	53.5	
	Absorbed power (1)	kW	8.0	10.9	13.6	
Heating	COP (1)		3.93	3.77	3.93	
EN14511)	SCOP (3)		4.42	4.32	4.27	
	Energy Efficiency (3)	%	174	170	168	
	Energy Class (4)		A++	A++	A++	
	Cooling capacity (5)	kW	20.4	28.9	37.3	
	Absorbed power (5)	kW	6.6	9.3	11.7	
O 1:	EER (5)		3.09	3.11	3.19	
Cooling	Cooling capacity (6)	kW	27.6	39.3	47.8	
	Absorbed power (6)	kW	7.7	10.7	12.8	
	EER (6)		3.58	3.67	3.73	
o ::	Cooling capacity (5)	kW	19.8	28.2	36.5	
Cooling (EN14511)	Absorbed power (5)	kW	7.2	10.0	12.5	
(EIN14311)	EER (5)		2.75	2.82	2.92	
Compressor	Quantity	n°	1	1	1	
	Power supply	V/Ph/Hz		400/3/50		
Supplementary	Heating capacity	kW	6/10	6/10	6/10	
electrical heater	Absorbed current	Α	26/43	26/43	26/43	
	Steps	n°	2	2	2	
Electrical	Power supply	V/Ph/Hz		400/3+N/50		
Electrical characteristics	Max. running current	Α	28	36	42	
criaracteristics	Max. starting current	Α	109	139	179	
	Water flow	l/s	1.47	1.92	2.51	
Water circuit	Pump available static pressure	kPa	230	227	195	
	Water connections	"G	2"	2"	2"	
Sound pressure (7)	dB(A)	61	62	64	
Meights	Transport weight	Kg	220	235	265	
Weights	Operating weight	Kg	224	239	269	

אומ	$\Lambda \square \Lambda$	ICIC	ากเรา

MODEL			24	27	40
L	STD	mm	1850	1850	1850
W	STD	mm	1000	1000	1000
Н	STD	mm	1300	1300	1300

CLEARANCE AREA

JWA/ML/ST 24÷40 S/Z/P 500 800 800 800

- Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b. Heated water from 30 to 35 °C, ambient air temperature 7 °C d.b./6 °C w.b. Seasonal energy efficiency of heating at low temperature with average climatic conditions. According to EU Regulation n. 813/2013.

 Seasonal energy efficiency class of heating at low temperature with average climatic conditions. According to EU Regulation n. 811/2013..

 Chilled water from 12 to 7 °C, ambient air temperature 35 °C.

 Chilled water from 23 to 18 °C, ambient air temperature 35 °C.

 Sound pressure level measured in free field conditions at 1 m from the unit 3.
- 4.
- 5.
- 6. 7. Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of WP version are specified on technical brochure.

VERSION

JWA/ML/ST

Heat pump with AQUALOGIK technology

JWA/ML/WP/ST

Reversible heat pump with AQUALOGIK technology

JWA/ML/SSL/ST

Super silenced Heat Pump with AQUALOGIK technology

JWA/ML/WP/SSL/ST

Super silenced reversible Heat Pump with AQUALOGIK technology

JWA/ML/ST 052÷082 S/Z/P

A CLASS ENERGY EFFICIENCY AIRCOOLED DEDICATED HEAT PUMPS WITH DOMESTIC HOT WATER PRODUCTION, AXIAL FANS, SCROLL COMPRESSORS, PLATE EXCHANGER AND HYDRONIC KIT.

MIDYLINE, featuring A CLASS energy efficiency, is the innovative series of Heat Pumps dedicated to **hot water production up to 60 °C** and operation up to -20 °C external air temperature, with Scroll compressors, axial fans and integrated hydronic kit. The unit, designed to originate and control - throughout the year - the best comfort conditions in rooms with a high rate of daily attendance, such as enclosed areas destined to the activities of the service sector, autonomously handles winter heating, summer air conditioning and the production of high temperature sanitary hot water. The MIDYLINE series, designed with an extremely compact structure for simple installation operations, uses only the electric energy and the heat accumulated in the air, to transfer heat to the rooms, thus allowing considerable energy savings, a high rate of reliability and the shortest start-up times. Flexibility is the main feature of the MIDYLINE series, which is indeed combined with terminal units and managed by the innovative, intelligent AQUALOGIK control and optimization system. This makes the use of an inertial tank unnecessary and it guarantees performances with elevated energy efficiency and silent functioning.

Are available as option the new EC Inverter fans with high available static pressure and efficiency for indoor ducted installation.

The units are compliant to the ErP Regulation.

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tubes and aluminium finned coil.
- Evaporator AISI 316 stainless steel braze welded plates type with two independent circuits on the refrigerant side and one on the water side, complete with flow switch and antifreeze heater.
- R407C refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors and pump and thermocontacts for fans.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C in cooling mode. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, an high/low pressure transducer on cooling circuit and an electrical heater on electrical board.
- Functioning in heating mode with outside air temperature down to -20 °C.
- The production of hot water up to 60 °C is reachable with outside air temperature down to -15 °C. With outside air temperature of -20 °C the reachable production of hot water is up to 45 °C.
- Water circuit includes: INVERTER circulating pump, safety valve and expansion vessel.
- Microprocessor control and regulation system with AQUALOGIK technology.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

Automatic circuit breakers

SI Unit silencement

RFM Cooling circuit shut-off valve on

discharge line

RFL Cooling circuit shut-off valve on

liquid line

FC EC Inverter fans

EC Inverter fans with high available FCH

static pressure

Desuperheater KC. Gas burner integration kit FΝ Antifreeze heater for pipes

FG Antifreeze heater for single pump

and pipes Soft start

SS ΤX Coil with pre-coated fins

IS Modbus RTU protocol, RS485 serial

LOOSE ACCESSORIES:

Storage tank for domestic hot water HW

production

MN High and low pressure gauges

CR Remote control panel

RP Coils protection metallic guards

AG Rubber shock absorbers

ΑM Spring shock absorbers

DS

MODEL			052	062	072	082		
MODEL	Heating capacity (1)	kW	57.2	78.3	92.7	114		
	Absorbed power (1)	kW	16.3	20.8	92.7 25.7	33.7		
	COP (1)	KVV	3.51	3.76	3.61	3.38		
Heating	* *	kW	55.7	74.4	91.1	3.38		
	Heating capacity (2)	kW		17.4	-			
	Absorbed power (2) COP (2)	KVV	13.7 4.07	4.28	21.5 4.24	27.1 4.13		
	* *	1.3.4.7		79.2	93.6			
	Heating capacity (1)	kW	58.0			116		
	Absorbed power (1)	kW	16.3	20.8	25.7	33.7		
Heating	COP (1)		3.56	3.81	3.64	3.43		
EN14511)	SCOP (3)	0/	4.92	5.52	5.11	4.80		
	Energy Efficiency (3)	%	194	218	201	189		
	Energy Class (4)		A++	A++	A++	A++		
	Cooling capacity (5)	kW	44.3	60.4	78.6	101		
	Absorbed power (5)	kW	16.4	23.6	34.8	39.1		
Cooling	EER (5)		2.70	2.56	2.26	2.58		
Cooming	Cooling capacity (6)	kW	60.3	81.8	101	130		
	Absorbed power (6)	kW	18.7	27.5	37.6	42.2		
	EER (6)		3.22	2.97	2.69	3.08		
Coolina	Cooling capacity (5)	kW	43.6	59.6	77.7	99.7		
EN14511)	Absorbed power (5)	kW	17.1	24.4	35.7	40.4		
LIN14311)	EER (5)		2.55	2.44	2.18	2.47		
	Quantity	n°	2	2	2	2		
Compressor	Refrigerant circuits	n°	2	2	2	2		
	Capacity steps	n°		2)			
The section of	Power supply	V/Ph/Hz	z 400/3/50					
Electrical characteristics	Max. running current	Α	44	56	68	84		
riaracteristics	Max. starting current	Α	125	159	205	246		
	Water flow	l/s	2.73	3.74	4.43	5.46		
Vater circuit	Pump available static pressure	kPa	165	145	130	110		
	Water connections	"G	2 ½"	2 ½"	2 ½"	2 ½"		
CH fan available	ST versions	Pa	90	80	100	100		
tatic pressure	SSL/ST versions	Pa	90	90	80	85		
-	STD version (7)	dB(A)	60	61	62	64		
Sound pressure	With SL accessory (7)	dB(A)	58	59	60	62		
	SSL version (7)	dB(A)	56	57	58	60		
	Transport weight	Kg	746	837	856	913		
Weights	Operating weight	Kg	755	855	875	935		

	ΝЛ		NS
	I V V A		N 5
-41	II W II	 $\mathbf{u} \mathbf{v}$	

MODEL			052	062	072	082
1	STD	mm	2350	2350	2350	2350
L	SSL	mm	2350	2350	2350	3550
W	STD/SSL	mm	1100	1100	1100	1100
11	STD	mm	1920	2220	2220	2220
П	SSL	mm	2220	2220	2220	2220

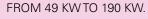
CLEARANCE AREA

JWA/ML/ST 052÷082 S/Z/P 300 800 800 1800

- Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b. Heated water from 30 to 35 °C, ambient air temperature 7 °C d.b./6 °C w.b. Seasonal energy efficiency of heating at low temperature with average climatic conditions. According to EU Regulation n. 813/2013.

 Seasonal energy efficiency class of heating at low temperature with average climatic conditions. According to EU Regulation n. 811/2013..

 Chilled water from 12 to 7 °C, ambient air temperature 35 °C.


 Chilled water from 23 to 18 °C, ambient air temperature 35 °C.

 Sound pressure level measured in free field conditions at 1 m from the unit 3.
- 4.
- 5.
- 6. 7. Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of SSL and WP versions are specified on technical brochure.

VERSION

JWA/EP

Multifunctional unit

JWA/EP/SSL

Super silenced multifunctional unit

JWA/EP 051÷191 S/K/P

AIRCOOLED 4-PIPE MULTIFUNCTIONAL UNITS WITH AXIAL FANS, SCROLL COMPRESSORS AND PLATE EXCHANGERS.

ENERGYPOWER is the range of high efficiency multifunctional units for 4-Pipe systems.

The units JWA/EP 051÷191 S/K/P feature R410A refrigerant and Scroll compressors activated in series based on the requested thermal load, to reach high EER/COP/TER and SEER/SCOP energy values. Thanks to the advanced control system, the units can simultaneously fulfill the heating, cooling and domestic hot water request of the building. The unit can manage the opposed thermal loads at the same time and reach the highest possible efficiency. ENERGYPOWER units make the traditional layout of the technical plants easier because the production of thermal energy for the several users are joint in one unit only; the result is an advantage in terms of installation, maintenance and management and in the meantime of the comfort needs.

Are available as option the new EC Inverter fans with high available static pressure and efficiency for indoor ducted installation.

Units are designed for hot water production up to 55 °C.

The units are compliant to the ErP Regulation.

On request, units can be supplied with R452B (JWA/EP 051÷191 S/G/P) or R454B (JWA/EP 051÷191 S/L/P) refrigerant.

FEATURES

PSH

TS

IS

WM

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Axial fans directly coupled to an electric motor with external rotor.
- Copper tube and aluminum finned coil.
- Condenser AISI 316 stainless steel braze welded plates type with one circuit on the refrigerant side and one on the water side. On the units it is always installed an antifreeze heater.
- Evaporator AISI 316 stainless steel braze welded plates type with one circuit on the refrigerant side and one on the water side, complete with water differential pressure switch. On the units it is always installed an antifreeze heater.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R410A refrigerant. On request R452B or R454B refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors and thermocontacts for fans.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C in cooling mode. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, high and low pressure transducers on cooling circuit and an electrical heater on electrical board.

IST

ISB

ISBT

ISL

ISS

IAV

IAA

IAS

IDL

СР

interface

interface

activation

- Functioning in heating mode with outside air temperature down to -15 °C.
- Microprocessor control and regulation system.

Single circulating pump heating side

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers

SL Unit silencement

RFM Cooling circuit shut-off valve on discharge line

RFL Cooling circuit shut-off valve on liauid line

RT Low water temperature kit

EC EC Inverter fans

ECH EC Inverter fans with high available static pressure

ΤX Coil with pre-coated fins

PSC Single circulating pump cooling side **PSIC** Inverter single circulating pump

cooling side

PDC Double circulating pump cooling side **PDIC** Inverter double circulating pump

cooling side

Inverter single circulating pump heating side
Double circulating pump heating side
Inverter double circulating pump
heating side
Antifreeze heater for pipes
Antifreeze heater for single pump
and pipes cooling side
Antifreeze heater for double pump
and pipes cooling side
Antifreeze heater for single pump
and pipes heating side
Antifreeze heater for double pump
and pipes heating side
Soft start

Touch screen Interface

LOOSE ACCESSORIES:

Web Monitoring - Wireless remote

monitoring (GPRS/EDGE/3G/TCP-IP)

MN High and low pressure gauges CR Remote control panel RP Coils protection metallic guards

Potential free contacts

Modbus TCP/IP protocol, Ethernet port

BACnet MSTP protocol, RS485 serial

BACnet TCP/IP protocol, Ethernet port

LonWorks protocol, FTT-10 serial

SNMP protocol, Ethernet port

Remote set-point, 0-10 V signal

Demand limit from digital input

Remote set-point, 4-20 mA signal

Remote signal for second set-point

Modbus RTU protocol, RS485 serial AG Rubber shock absorbers interface AM Spring shock absorbers

TECHNICA	AL DATA - JWA/EF	° 051÷	191 5	S/K/P									
MODEL			051	061	071	081	091	101	111	121	141	171	191
	Cooling capacity (1)	kW	48.6	55.9	63.2	72.2	81.8	92.7	105	118	134	159	190
Cooling only	Absorbed power (1)	kW	16.8	19.3	21.9	24.4	27.9	32.5	38.0	42.3	46.5	57.4	68.5
	EER (1)		2.89	2.90	2.89	2.96	2.93	2.85	2.76	2.79	2.88	2.77	2.77
	Cooling capacity (1)	kW	48.3	55.5	62.8	71.7	81.3	92.2	105	117	133	158	189
	Absorbed power (1)	kW	17.1	19.6	22.3	24.9	28.4	33.1	38.5	42.9	47.2	58.3	69.5
Cooling only	EER (1)		2.82	2.83	2.82	2.88	2.86	2.79	2.73	2.73	2.82	2.71	2.72
(EN14511)	SEER (2)		4.17	4.18	4.17	4.20	4.19	4.16	4.14	4.14	4.17	4.13	4.13
	Energy Efficiency (2)	%	164	164	164	165	165	163	163	163	164	162	162
	Heating capacity (3)	kW	52.2	59.7	67.0	75.5	86.0	98.4	111	127	142	171	203
Heating only	Absorbed power (3)	kW	16.0	18.7	21.2	23.4	26.5	30.0	35.1	39.5	42.8	52.5	61.2
0 ,	COP (3)		3.26	3.19	3.16	3.23	3.25	3.28	3.16	3.22	3.32	3.26	3.32
	Heating capacity (3)	kW	52.5	60.0	67.4	75.9	86.4	98.8	112	128	143	172	204
	Absorbed power (3)	kW	16.3	19.0	21.6	23.9	27.0	30.5	35.7	40.3	43.9	53.7	62.7
Heating only	COP (3)		3.22	3.16	3.12	3.18	3.20	3.24	3.14	3.18	3.26	3.20	3.25
(EN14511)	SCOP (4)		3.49	3.46	3.36	3.36	3.38	3.93	3.58	3.53	3.73	3.73	3.75
	Energy Efficiency (4)	%	137	135	131	131	132	154	140	138	146	146	147
	Energy Class (5)		A+	A+	A+	A+	-	_	_	_		_	
	Cooling capacity (6)	kW	49.6	56.5	62.9	71.8	83.3	94.0	110	126	140	168	203
Cooling +	Heating capacity (6)	kW	64.9	73.9	82.5	94.1	109	123	143	163	181	217	261
Heating	Absorbed power (6)	kW	15.3	17.4	19.6	22.3	25.2	29.4	32.6	37.2	40.7	49.0	58.4
	TER (6)	IX V	7.48	7.49	7.42	7.44	7.63	7.38	7.76	7.77	7.89	7.86	7.95
	Cooling capacity (6)	kW	49.3	56.2	62.5	71.3	82.8	93.4	109	125	139	167	202
Cooling +	Heating capacity (6)	kW	65.2	74.3	82.9	94.6	110	124	144	164	182	218	262
Heating	Absorbed power (6)	kW	15.6	17.7	20.0	22.8	25.7	30.0	33.1	37.8	41.4	49.8	59.3
(EN14511)	TER (6)	IXVV	7.34	7.37	7.27	7.28	7.50	7.25	7.64	7.65	7.75	7.73	7.82
	Quantity	n°	2	2	2	2	2	3	3	3	2	3	3
Compressor	Refrigerant circuits	n°	1	1	1	1	1	1	1	1	1	1	1
Compresser	Capacity steps	n°	<u> </u>		2			<u> </u>	3		2		3
	Water flow	I/s	2.32	2.67	3.02	3.45	3.91	4.43	5.02	5.64	6.40	7.60	9.08
Evaporator -	Pressure drops	kPa	35	41	53	50	49	51	38	46	50	52	52
cooling side	Water connections	"G	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	3"	3"
	Water flow	l/s	2.49	2.85	3.20	3.61	4.11	4.70	5.30	6.07	6.78	8.17	9.70
Condenser -	Pressure drops	kPa	31	35	38	42	40	35	34	42	48	43	45
heating side	Water connections	"G	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	3"	3"
	Power supply	V/Ph/Hz	2 /2	2 /2	2 /2	2 /2	2 /2	400/3/50		2 /2	2 /2		
Electrical	Max. running current	Α	40	46	54	59	66	77	84	95	100	128	151
characteristics	Max. starting current	A	164	166	178	191	234	201	217	263	314	304	359
Unit with pump -	Pump available static pressure	kPa	150	140	120	115	130	115	115	95	150	135	115
cooling side	Water connections	"G	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	3"	3"
Unit with pump -	Pump available static pressure	kPa	150	140	130	120	135	125	115	160	150	135	115
heating side	Water connections	"G	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	3"	3"
ECH fan available		Pa	95	100	95	95	95	100	60	50	60	50	50
static pressure	SSL version	Pa	70	85	70	70	70	90	50	50	60	50	50
- Clario produire	STD version (7)	dB(A)	63	64	64	65	65	66	68	68	69	70	70
Sound pressure	With SL accessory (7)	dB(A)	61	62	62	63	63	64	66	66	67	68	68
Souria pressure	SSL version (7)	dB(A)	58	59	59	60	60	61	63	63	64	65	65
	Transport weight	Kg	750	760	815	905	925	1030	1055	1085	1295	1500	1545
Weights	Operating weight	Kg	765	775	830	925	950	1060	1035	1115	1335	1545	1595
	Operating weight	l va	/00	//5	030	920	950	1000	1000	1113	1333	1040	1090

DIMENSIONS

MODEL			051	061	071	081	091	101	111	121	141	171	191
1	STD	mm	2350	2350	2350	2350	2350	2350	2350	2350	3550	3550	3550
L	SSL	mm	2350	2350	2350	2350	2350	3550	3550	3550	3550	4700	4700
W	STD/SSL	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Н	STD/SSL	mm	1920	1920	1920	2220	2220	2220	2220	2220	2220	2220	2220

CLEARANCE AREA

JWA/EP 051÷191 S/K/P 300 800 800 1800

- Chilled water from 12 to 7 °C, ambient air temperature 35 °C.
- 2. Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b. Seasonal energy efficiency of heating at low temperature with average climatic 3. 4.
- Seasonal energy efficiency class of heating at low temperature with average climate conditions. According to EU Regulation n. 813/2013.

 Seasonal energy efficiency class of heating at low temperature with average climatic conditions. According to EU Regulation n. 811/2013..

 Chilled water from 12 to 7 °C, heated water from 40 to 45 °C. 5.
- 6.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of SSL version are specified on technical brochure.

JWH/WP 4÷40 S/K/P

HEAT PUMPS WITH ROTARY/SCROLL COMPRESSOR AND PLATE EXCHANGERS.

The JWH/WP $4\div40$ S/K/P Heat Pumps, with R410A refrigerant, are designed for small and medium domestic or industrial systems which require medium-low power, space-saving units and quiet operation. These units are ideal for indoor installation and, equipped with a self-contained structure, they reduce the overall dimensions to a minimum while making installation and maintenance operations easier.

These units can be combined with Fan Coil units or with intermediate heat exchangers for process cooling applications.

Equipped with prepainted plate structure, Rotary/Scroll compressor and plate exchangers, these units have cooling and hydraulic circuits complete with everything necessary for quick installation and high energy efficiency, even in tank and pump version.

A wide range of accessories, factory fitted or supplied separately, completes the outstanding versatility and functionality of the series.

The units are compliant to the ErP Regulation.

FROM 5 KW TO 49 KW.

VERSION

JWH/WP

Reversible Heat Pump

JWH/WP/SP

Reversible Heat Pump with tank and pump

FEATURES

- Self-supporting prepainted steel frame.
- Rotary/Scroll compressor with internal overheat protection and crankcase heater, if needed.
- Condenser AISI 316 stainless steel braze welded plates type, with pressostatic valve.
- Evaporator AISI 316 stainless steel braze welded plates type, complete with water differential
 pressure switch.
- R410A refrigerant.
- Electrical board includes: main switch with door lock device, fuses, compressor and pump remote control switch.
- Water circuit for SP version includes: insulated tank, circulating pump, safety valve, gauge and expansion vessel.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

BT Low water temperature kit
PS Single circulating pump
FE Antifreeze heater for evaporator
FA Antifreeze heater for tank
VV Pressure valve and solenoid valve

(for WP versions)

LOOSE ACCESSORIES:

CR Remote control panel

IS Modbus RTU protocol, RS485 serial

interface

AG Rubber shock absorbers

TECHNIC					-	0 -	0 -	.11	.14
MODEL	10.5	11111	4	5	7	8	9	11	14
Salation.	Cooling capacity (1)	kW	4.6	5.8	7.1	8.3	9.6	11.6	14.3
Cooling	Absorbed power (1)	kW	1.1 4.18	1.4 4.14	1.8	2.0	2.3 4.17	2.9 4.00	3.4 4.21
	EER (1)	kW	4.18	5.7	3.94 7.0	4.15	9.5	11.5	14.2
Cooling	Cooling capacity (1) Absorbed power (1)	kW	1.2	1.5	2.0	8.2 2.2	2.5	3.2	3.7
EN14511)	EER (1)	KVV	3.83	3.70	3.47	3.80	3.78	3.58	3.80
· · · · · · · · · · · · · · · · · · ·		kW	5.9	7.2	8.8	10.4	12.5	14.9	17.5
Heating	Heating capacity (2) Absorbed power (2)	kW	1.4	1.7	2.2	2.5	3.0	3.5	4.3
leating	COP (2)	NVV	4.21	4.24	4.00	4.16	4.17	4.26	4.07
	Heating capacity (2)	kW	5.1	6.7	8.4	9.8	11.9	13.7	17.1
	Absorbed power (2)	kW	1.5	1.8	2.5	2.8	3.7	3.9	4.5
Heating	COP (2)	NVV	3.38	3.64	3.31	3.51	3.25	3.56	3.81
EN14511)	SCOP (3)		4.20	4.15	3.85	4.18	4.31	4.38	4.34
LIN14511)	Energy Efficiency (3)	%	160	158	146	159	164	167	166
	Energy Class (4)	70	A++	A++	A+	A++	A++	A++	A++
	Type		АП		tary	AII	All	Scroll	AII
Compressor	Quantity	n°	1	1 1	1	1	1	1	1
	Water flow	I/s	0.22	0.28	0.34	0.40	0.46	0.55	0.68
vaporator	Pressure drops	kPa	21	30	44	26	30	45	42
vaporator	Water connections	"G	1"	1"	1"	1"	1"	1"	1"
	Water flow	I/s	0.07	0.09	0.11	0.12	0.14	0.17	0.21
Condenser	Pressure drops	kPa	3	4	5	6	8	10	5
00110011001	Water connections	"G	1"	1"	1"	1"	1"	1"	1"
Talakata at	Power supply	V/Ph/Hz			230	/1/50			400/3+N/9
lectrical	Max. running current	Α Α	8	10	13	14	16	22	9
haracteristics	Max. starting current	A	37	43	62	62	75	86	50
	Water flow	I/s	0.22	0.28	0.34	0.40	0.46	0.55	0.68
op :	Pump available static pressure	kPa	40	33	38	55	50	35	128
Init SP versions	Tank water volume		50	50	50	50	50	50	50
	Water connections	"G	1"	1"	1"	1"	1"	1"	1"
Sound pressure	STD/SP version (5)	dB(A)	39	39	39	39	41	43	43
· · · · · · · · · · · · · · · · · · ·	Transport weight (6)	Kg	77	78	80	84	87	90	93
Neights	Operating weight (6)	Va				0.5	00	91	0.5
	Operating weight (6)	Kg	78	79	81	85	88) 91	95
MODEL			16	18	20	24	27	34	40
	Cooling capacity (1)	kW	16 17.1	18	20	24 27.7	27	34	40
MODEL Cooling	Cooling capacity (1) Absorbed power (1)		16 17.1 4.1	18 20.0 4.8	20 23.0 5.5	24 27.7 6.8	27 33.6 7.9	34 39.7 9.3	40 49.2 11.5
	Cooling capacity (1) Absorbed power (1) EER (1)	kW kW	16 17.1 4.1 4.17	18 20.0 4.8 4.17	20 23.0 5.5 4.18	24 27.7 6.8 4.07	27 33.6 7.9 4.25	34 39.7 9.3 4.27	40 49.2 11.5 4.28
Cooling	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1)	kW kW	16 17.1 4.1 4.17 17.0	18 20.0 4.8 4.17 19.8	20 23.0 5.5 4.18 22.8	24 27.7 6.8 4.07 27.5	27 33.6 7.9 4.25 33.3	34 39.7 9.3 4.27 39.4	40 49.2 11.5 4.28 48.8
Cooling	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1)	kW kW	16 17.1 4.1 4.17 17.0 4.4	18 20.0 4.8 4.17 19.8 5.2	20 23.0 5.5 4.18 22.8 6.0	24 27.7 6.8 4.07 27.5 7.4	27 33.6 7.9 4.25 33.3 8.7	34 39.7 9.3 4.27 39.4 10.1	40 49.2 11.5 4.28 48.8 12.1
	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1)	kW kW kW	16 17.1 4.1 4.17 17.0 4.4 3.86	18 20.0 4.8 4.17 19.8 5.2 3.79	20 23.0 5.5 4.18 22.8 6.0 3.79	24 27.7 6.8 4.07 27.5 7.4 3.72	27 33.6 7.9 4.25 33.3 8.7 3.83	34 39.7 9.3 4.27 39.4 10.1 3.92	40 49.2 11.5 4.28 48.8 12.1 4.03
Cooling Cooling EN14511)	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2)	kW kW kW kW	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5
Cooling	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2)	kW kW kW	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4
Cooling Cooling EN14511)	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2)	kW kW kW kW kW	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13
Cooling Cooling EN14511)	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2)	kW kW kW kW kW	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 37.9	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4
Cooling Cooling EN14511) Heating	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Absorbed power (2)	kW kW kW kW kW	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7 5.6	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 37.9 10.8	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4 15.2
Cooling Cooling EN14511) Heating	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Absorbed power (2) COP (2) COP (2) COP (2) COP (2)	kW kW kW kW kW	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7 5.6 3.50	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3 3.59	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2 3.67	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9 3.56	27 33.6 7.9 4.25 33.3 8.7 3.83 10.1 3.94 37.9 10.8 3.50	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4 3.58	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4 15.2 3.71
Cooling Cooling EN14511) Heating	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Absorbed power (2) COP (2) SCOP (3)	kW kW kW kW kW kW	16 17.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7 5.6 3.50 3.95	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3 3.59 4.05	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2 3.67 4.05	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9 3.56 4.31	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 37.9 10.8 3.50 3.94	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4 4.5 12.4 4.18	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4 15.2 3.71 4.28
Cooling Cooling EN14511) Heating	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Absorbed power (2) COP (2) Scop (3) Energy Efficiency (3)	kW kW kW kW kW	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7 5.6 3.50 3.95 150	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3 3.59 4.05	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2 3.67 4.05	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9 3.56 4.31	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 37.9 10.8 3.50 3.50 3.94	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4 3.58 4.18	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4 15.2 3.71 4.28 163
Cooling Cooling EN14511) Heating	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Absorbed power (2) COP (2) ScoP (3) Energy Efficiency (3) Energy Class (4)	kW kW kW kW kW kW	16 17.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7 5.6 3.50 3.95	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3 3.59 4.05	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2 3.67 4.05	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9 3.56 4.31 164 A++	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 37.9 10.8 3.50 3.94	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4 4.5 12.4 4.18	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4 15.2 3.71 4.28
Cooling Cooling EN14511) Heating Heating EN14511)	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Absorbed power (2) COP (2) SCOP (3) Energy Efficiency (3) Energy Class (4) Type	kW kW kW kW kW kW	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7 5.6 3.50 3.95 150 A+	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3 3.59 4.05	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2 3.67 4.05 154 A++	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9 3.56 4.31	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 37.9 10.8 3.50 3.94 150 A+	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4 3.58 4.18 159 A++	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4 15.2 3.71 4.28 163
Cooling Cooling EN14511) Heating Heating EN14511)	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Absorbed power (2) COP (2) COP (2) SCOP (3) Energy Efficiency (3) Energy Class (4) Type Quantity	kW kW kW kW kW kW	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7 5.6 3.50 3.95 150 A+	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3 3.59 4.05 154 A++	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2 3.67 4.05 154 A++	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9 3.56 4.31 164 A++	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 37.9 10.8 3.50 3.94 150 A+	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4 3.58 4.18 159 A++	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4 15.2 3.71 4.28 163 A++
Cooling Cooling EN14511) Heating Heating EN14511) Compressor	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Absorbed power (2) COP (2) SCOP (3) Energy Efficiency (3) Energy Class (4) Type Ouantity Water flow	kW k	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7 5.6 3.50 3.95 150 A+	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3 3.59 4.05 154 A++	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2 3.67 4.05 154 A++	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9 3.56 4.31 164 A++ Scroll 1 1.32	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 37.9 10.8 3.50 3.94 150 A+	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4 3.58 4.18 159 A++	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4 15.2 3.71 4.28 163 A++
Cooling Cooling EN14511) deating leating EN14511) Compressor	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Absorbed power (2) COP (2) SCOP (3) Energy Efficiency (3) Energy Class (4) Type Quantity Water flow Pressure drops	kW k	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7 5.6 3.50 3.95 150 A+	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3 3.59 4.05 154 A++	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2 3.67 4.05 154 A++	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9 3.56 4.31 164 A++ Scroll 1 1.32 48	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 10.8 3.50 3.94 150 A+	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4 3.58 4.18 159 A++	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4 15.2 3.71 4.28 163 A++
Cooling Cooling EN14511) Heating Heating EN14511) Compressor	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Absorbed power (2) COP (2) SCOP (3) Energy Efficiency (3) Energy Class (4) Type Quantity Water flow Pressure drops Water connections	kW kW kW kW months with second	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7 5.6 3.95 150 A+	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3 3.59 4.05 154 A++	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2 3.67 4.05 154 A++	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9 3.56 4.31 164 A++ Scroll 1 1.32 48 1"	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 37.9 10.8 3.50 3.94 150 A+	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4 3.58 4.18 159 A++	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4 15.2 3.71 4.28 163 A++
Cooling Cooling EN14511) Heating Heating EN14511) Compressor	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Heating capacity (2) Absorbed power (2) COP (2) SCOP (3) Energy Efficiency (3) Energy Class (4) Type Quantity Water flow Pressure drops Water connections Water flow	kW kW kW kW kW kW n° l/s kPa "G	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7 5.6 3.50 3.95 150 A+ 1 0.82 29 1" 0.25	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3 3.59 4.05 154 A++	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2 3.67 4.05 154 A++	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9 3.56 4.31 164 A++ Scroll 1 1.32 48 1" 0.41	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 37.9 10.8 3.50 A+ 1 1.61 60 1" 0.50	34 39.7 39.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4 3.58 4.18 159 A++	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4 15.2 3.71 163 A++
cooling Cooling EN14511) leating leating EN14511) compressor vaporator	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Absorbed power (2) COP (2) SCOP (3) Energy Efficiency (3) Energy Efficiency (3) Energy Class (4) Type Quantity Water flow Pressure drops Water connections Water flow Pressure drops	kW k	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7 5.6 3.95 150 A+	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3 3.59 4.05 154 A++	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2 3.67 4.05 154 A++	24 277 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9 3.56 4.31 164 A++ Scroll 1 1.32 48 1" 0.41 20	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 37.9 10.8 3.50 A+ 1 1.61 60 1" 0.50	34 39.7 39.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4 3.58 4.18 159 A++	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4 15.2 3.71 4.28 163 A++
cooling Cooling EN14511) leating leating EN14511) compressor vaporator	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Absorbed power (2) COP (2) SCOP (3) Energy Efficiency (3) Energy Efficiency (3) Energy Class (4) Type Quantity Water flow Pressure drops Water connections Water flow Pressure drops Water connections	kW k	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7 5.6 3.50 3.95 150 A+ 1 0.82 29 1" 0.25	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3 3.59 4.05 154 A++	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2 3.67 4.05 154 A++	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9 3.56 4.31 164 A++ Scroll 1 1.32 48 1" 0.41 20 1"	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 37.9 10.8 3.50 3.94 150 A+	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4 3.58 4.18 159 A++	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4 15.2 3.71 4.28 163 A++
cooling Cooling EN14511) Ideating Ideating EN14511) Compressor Vaporator Condenser	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Heating capacity (2) Absorbed power (2) COP (2) SCOP (3) Energy Efficiency (3) Energy Class (4) Type Quantity Water flow Pressure drops Water connections Water connections Power supply	kW kW kW kW kW kW kW n° l/s kPa "G l/s kPa "G V/Ph/Hz	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7 5.6 3.50 3.95 150 A+ 1 0.82 29 1" 0.25 8	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3 3.59 4.05 154 A++ 1 0.96 40 1" 0.30 10 1"	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2 3.67 4.05 154 A++	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9 3.56 4.31 164 A++ Scroll 1 1.32 48 1" 0.41 20 1" 400/3+N/50	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 37.9 10.8 3.50 3.94 150 A+ 1 1.61 60 1" 0.50 21 1"	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4 3.58 4.18 159 A++ 190 49 1" 0.58 22 1"	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4 15.2 3.71 4.28 163 A++
Cooling Cooling EN14511) Ideating Ideating EN14511) Compressor vaporator Condenser	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Absorbed power (2) COP (2) SCOP (3) Energy Efficiency (3) Energy Efficiency (3) Energy Class (4) Type Quantity Water flow Pressure drops Water connections Water flow Pressure drops Water connections Power supply Max. running current	kW kW kW kW kW kW kW monority y6 l/s kPa "G l/s kPa "G V/Ph/Hz	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7 5.6 3.50 3.95 150 A+ 1 0.82 29 1" 0.25 8	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3 3.59 4.05 154 A++ 1 0.96 40 1" 0.30 10 1"	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2 3.67 4.05 154 A++	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9 3.56 4.31 164 A++ Scroll 1 1.32 48 1" 0.41 20 1" 400/3+N/50	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 37.9 10.8 3.50 3.94 150 A+ 1 1.61 60 1" 0.50 21 1"	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4 3.58 4.18 159 A++ 1 .90 49 1" 0.58 22 1"	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4 15.2 3.71 4.28 163 A++
Cooling Cooling EN14511) Ideating Ideating EN14511) Compressor vaporator Condenser	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Absorbed power (2) COP (2) SCOP (3) Energy Efficiency (3) Energy Efficiency (3) Energy Class (4) Type Quantity Water flow Pressure drops Water connections Water flow Pressure drops Water connections Power supply Max. running current Max. starting current	kW k	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7 5.6 3.50 3.95 150 A+ 1 0.82 29 1" 0.25 8 1"	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3 3.59 4.05 154 A++ 1 0.96 40 1" 0.30 10 1"	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2 3.67 4.05 154 A++ 1.10 47 1" 0.34 13 1"	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9 3.56 4.31 164 A++ Scroll 1 1.32 48 1." 400/3+N/50 18 142	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 37.9 10.8 3.50 3.94 150 A+ 1 1.61 60 1" 0.50 21 1"	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4 3.58 4.18 159 A++ 1 .90 49 1 " 0.58 22 1 "	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4 15.2 3.71 4.28 163 A++ 1 0.3 59.5 14.7 10.
Cooling Cooling EN14511) Ideating Ideating EN14511) Compressor vaporator Condenser	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Absorbed power (2) COP (2) SCOP (3) Energy Efficiency (3) Energy Efficiency (3) Energy Class (4) Type Quantity Water flow Pressure drops Water connections Water flow Pressure drops Water connections Power supply Max. running current Max. starting current Max. starting current Max. starting current Max. starting current Water flow	kW k	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7 5.6 3.50 3.95 150 A+ 1 0.82 29 1" 0.25 8 1" 71 0.82	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3 3.59 4.05 154 A++ 1 0.96 40 1" 0.30 10 1" 14 74 0.96	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2 3.67 4.05 154 A++ 1 1.10 47 1" 0.34 13 1"	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9 3.56 4.31 164 A++ Scroll 1 1.32 48 1" 0.41 20 1" 400/3+N/50 18 142 1.32	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 37.9 10.8 3.50 A+ 1 1.61 60 1" 0.50 21 1" 20 142 1.61	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4 3.58 4.18 159 A++ 1 1.90 22 1"	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4 15.2 3.71 4.28 163 A++ 1 2.35 54 1" 0.73 22 1" 29 197 2.35
Cooling Cooling EN14511) Heating Heating EN14511) Compressor Evaporator Condenser Electrical tharacteristics	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Absorbed power (2) COP (2) SCOP (3) Energy Efficiency (3) Energy Efficiency (3) Energy Class (4) Type Quantity Water flow Pressure drops Water connections Water connections Water connections Power supply Max. running current Max. starting current Water flow Pump available static pressure	kW k	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7 5.6 3.50 3.95 150 A+ 1 0.82 29 1" 0.25 8 1" 11 71 0.82 131	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3 3.59 4.05 154 A++ 1 0.96 40 1" 0.30 10 1"	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2 3.67 4.05 154 A++ 1 1.10 47 1" 0.34 13 1"	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9 3.56 4.31 164 A++ Scroll 1 1.32 48 1" 0.41 20 1" 400/3+N/50 18 142 1.32 1.32 1.87	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 37.9 10.8 3.50 A+ 1 1.61 60 1" 0.50 21 1" 20 142 1.61 160	34 39.7 39.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4 3.58 4.18 159 A++ 1 0.58 22 1 "	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4 15.2 3.71 4.28 163 A++ 10.73 22 1" 29 197 2.35 155
Cooling Cooling EN14511) Heating Heating Compressor Evaporator Condenser Electrical haracteristics	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Absorbed power (2) COP (2) SCOP (3) Energy Efficiency (3) Energy Efficiency (3) Energy Class (4) Type Ouantity Water flow Pressure drops Water connections Water flow Pressure drops Water connections Power supply Max. running current Max. starting current Water flow Pump available static pressure Tank water volume	kW kPa "G l/s kPa "G V/Ph/Hz A A J/s kPa l l	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7 5.6 3.50 3.95 150 A+ 1 0.82 29 1" 0.25 8 1" 0.82 11" 0.82 1150 11 71 0.82 131 50	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3 3.59 4.05 154 A++ 1 0.96 40 1" 0.30 10 1" 14 74 0.96 100 50	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2 3.67 4.05 154 A++ 1 1.10 47 1" 0.34 13 1" 15 74 1.10 93 50	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9 3.56 4.31 164 A++ Scroll 1 1.32 48 1" 0.41 20 1" 400/3+N/50 18 142 1.32 187	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 37.9 10.8 3.50 A+ 1 1.61 60 1" 0.50 21 1" 20 142 1.61 160 100	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4 3.58 4.18 159 A++ 1 .90 49 1" 0.58 22 1" 1.90	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4 15.2 3.71 4.28 163 A++ 1 2.35 54 1 " 0.73 22 1 " 29 197 2.35 155 100
Cooling Cooling EN14511) Heating Heating Compressor Evaporator Condenser Electrical haracteristics Unit SP versions	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Absorbed power (2) COP (2) SCOP (3) Energy Efficiency (3) Energy Efficiency (3) Energy Class (4) Type Quantity Water flow Pressure drops Water connections Water flow Pressure drops Water connections Power supply Max. running current Max. starting current Water flow Pump available static pressure Tank water volume Water connections	kW k	16 17.1 41 417 17.0 44 386 208 54 385 19.7 56 350 395 150 A+ 1 082 29 1" 025 8 1" 71 082 131 50 1"	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3 3.59 4.05 154 A++ 1 0.96 40 1" 0.30 10 1" 14 74 0.96 100 50 1"	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2 3.67 4.05 154 A++ 1 1.10 47 1" 0.34 13 1" 15 74 1.10 93 50 1"	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9 3.56 4.31 164 A++ Scroll 1 1.32 48 1" 0.41 20 1" 400/3+N/50 18 142 1.32 1.82 1.83 1.84 1.84 1.85 1.86 1.87 1.	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 37.9 10.8 3.50 3.94 150 A+ 1 1.61 60 1" 0.50 21 1" 20 142 1.61 160 100 1"	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4 3.58 4.18 159 A++ 1 1.90 49 1" 0.58 22 1" 1" 23 147 1.90 131 131 131 130 131 131 131 13	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 15.2 3.71 4.28 163 A++ 1 2.35 54 1 " 0.73 22 1 " 1 " 2 9 1 97 2.35 150 100 1 "
Cooling Cooling EN14511) Heating Heating EN14511) Compressor Evaporator Condenser	Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) Heating capacity (2) Absorbed power (2) COP (2) Heating capacity (2) Absorbed power (2) COP (2) SCOP (3) Energy Efficiency (3) Energy Efficiency (3) Energy Class (4) Type Ouantity Water flow Pressure drops Water connections Water flow Pressure drops Water connections Power supply Max. running current Max. starting current Water flow Pump available static pressure Tank water volume	kW kPa "G l/s kPa "G V/Ph/Hz A A J/s kPa l l	16 17.1 4.1 4.17 17.0 4.4 3.86 20.8 5.4 3.85 19.7 5.6 3.50 3.95 150 A+ 1 0.82 29 1" 0.25 8 1" 0.82 11" 0.82 1150 11 71 0.82 131 50	18 20.0 4.8 4.17 19.8 5.2 3.79 24.3 6.1 3.98 22.5 6.3 3.59 4.05 154 A++ 1 0.96 40 1" 0.30 10 1" 14 74 0.96 100 50	20 23.0 5.5 4.18 22.8 6.0 3.79 28.4 7.0 4.06 26.3 7.2 3.67 4.05 154 A++ 1 1.10 47 1" 0.34 13 1" 15 74 1.10 93 50	24 27.7 6.8 4.07 27.5 7.4 3.72 33.8 8.2 4.12 31.8 8.9 3.56 4.31 164 A++ Scroll 1 1.32 48 1" 0.41 20 1" 400/3+N/50 18 142 1.32 187	27 33.6 7.9 4.25 33.3 8.7 3.83 39.8 10.1 3.94 37.9 10.8 3.50 A+ 1 1.61 60 1" 0.50 21 1" 20 142 1.61 160 100	34 39.7 9.3 4.27 39.4 10.1 3.92 47.0 11.7 4.02 44.5 12.4 3.58 4.18 159 A++ 1 .90 49 1" 0.58 22 1" 1.90	40 49.2 11.5 4.28 48.8 12.1 4.03 59.5 14.4 4.13 56.4 15.2 3.71 4.28 163 A++ 1 2.35 54 1 " 0.73 22 1 " 29 197 2.35 155 100

	I = I	ICIO	NIC
מוכו	ЛΕΝ	ISIO	1/1/2

	0.00															
MODEL				5	7	8	9	11	14	16	18	20	24	27	34	40
1	STD	mm	550	550	550	550	550	550	550	550	550	550	550	550	550	550
L	SP	mm	550	550	550	550	550	550	550	550	550	550	1100	1100	1100	1100
W	STD/SP	mm	550	550	550	550	550	550	550	550	550	550	550	550	550	550
Н	STD/SP	mm	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200

CLEARANCE AREA

JWH/WP 4÷40 S/K/P 500 800 800 800 JWH/WP/SP 24÷40 S/K/P 500 800 800 800

- Chilled water from 12 to 7 °C, water temperature at the condenser from 15 to 35 °C. Heated water from 40 to 45 °C, water temperature at the evaporator from 15 to 10 °C. Seasonal energy efficiency of heating at low temperature with average climatic conditions. According to EU Regulation n. 813/2013. Seasonal energy efficiency class of heating at low temperature with average climatic conditions. According to EU Regulation n. 811/2013. 2. 3.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- Unit without tank and pump.
 N.B. Weights of WP versions are specified on technical brochure.

VERSION

JWH

Cooling only

JWH/WP

Reversible Heat Pump

JWH 051÷172 S/K/P

WATERCOOLED LIQUID CHILLERS AND HEAT PUMPS WITH SCROLL COMPRESSORS AND PLATE EXCHANGERS.

The JWH 051÷172 S/K/P liquid Chillers and Heat Pumps, with R410A refrigerant, are designed for medium-sized domestic or industrial systems which require medium power, space-saving units and guiet operation. This range is ideal for indoor installation and, equipped with a self-contained structure, it reduces the overall dimensions to a minimum while at the same time making installation and maintenance operations easier. These units are used to remove the heat developed during industrial processes or, combined with Fan Coil units, for the air conditioning of the rooms. They can be supplied with Modbus RTU protocol through RS485 serial interface. Equipped with polyester powder plate painting structure, Scroll compressors and plate exchangers, these units have cooling and hydraulic circuits complete with everything necessary for quick installation and high energy efficiency, even in the version with tank and pump; and a series of accessories, factory fitted or supplied separately, like desuperheater and total heat recovery, rounds off the variety of equipment in this product range.

The units are compliant to the ErP Regulation.

On request, units can be supplied with R452B JWH (051÷172 S/G/P) or R454B (JWH 051÷172 S/L/P) refrigerant.

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Condenser AISI 316 stainless steel braze welded plates type with one circuit on the refrigerant side and one on the water side in 051÷131 models; with two independent circuits on the refrigerant side and one on the water side in 152÷172 models.
- Evaporator AISI 316 stainless steel braze welded plates type with one circuit on the refrigerant side and one on the water side in 051÷131 models; with two independent circuits on the refrigerant side and one on the water side in 152÷172 models, complete with water differential pressure switch.
- R410A refrigerant. On request R452B or R454B refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors, interface relay and terminals for external connections.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM	Automatic	circuit	hraakare
IIVI	Automatic	Circuit	DICUNCIS

Unit silencement RFM Cooling circuit shut-off valve on

discharge line

RFL Cooling circuit shut-off valve on

liquid line ВТ Low water temperature kit

DS Desuperheater

RT Total heat recovery

FΕ Antifreeze heater for evaporator FΩ Antifreeze heater for tank and pipes

SS Soft start

IS Modbus RTU protocol, RS485 serial interface

LOOSE ACCESSORIES:

MN High and low pressure gauges

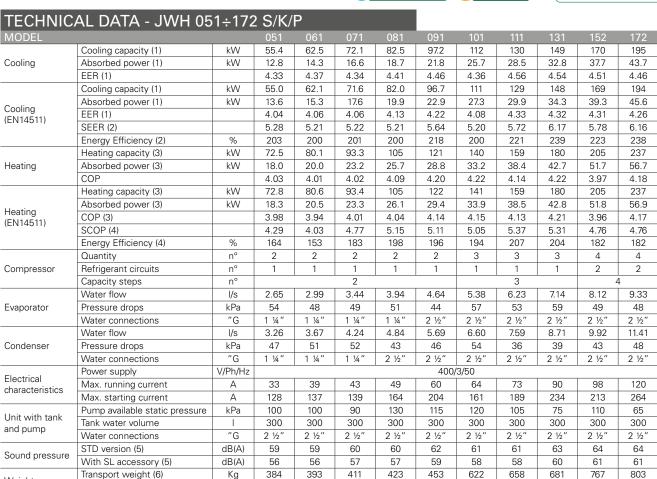
CR Remote control panel

SPU Inertial tank and single circulating

SPD Inertial tank and double circulating

pump

PV2 2-Way electronic pressostatic valve


PV3 3-Way electronic pressostatic valve

AG Rubber shock absorbers AM

Spring shock absorbers

EUROVENT CERTIFIED PERFORMANCE

\mathbf{D}	$\mathbf{N} \wedge \mathbf{I} = \mathbf{N}$	чен	IQ.
	MEI	$u \circ u$	\mathbf{o}

Weights

Operating weight (6)

MODEL			051	061	071	081	091	101	111	131	152	172
	L	mm	1200	1200	1200	1200	1200	2285	2285	2285	2285	2285
UNIT	W	mm	680	680	680	680	680	680	680	680	680	680
	Н	mm	1520	1520	1520	1520	1520	1520	1520	1520	1520	1520
	L	mm	2310	2310	2310	2310	2310	3395	3395	3395	3395	3395
UNIT + SPU/SPD	W	mm	680	680	680	680	680	680	680	680	680	680
	Н	mm	1520	1520	1520	1520	1520	1520	1520	1520	1520	1520

CLEARANCE AREA

JWH 051÷172 S/K/P

0 300 800 300

Kg

Kg

390

400

420

435

470

640

680

705

790

830

- Chilled water from 12 to 7 °C, water temperature at the condenser from 30 to 35 °C.
- 2. Seasonal energy efficiency of cooling at medium temperature. According to EU Regulation n. 2016/2281.
- Heated water from 40 to 45 °C, water temperature at the evaporator from 15 to 10 °C. 3.
- 4 Seasonal energy efficiency of heating at low temperature with average climatic conditions. According to EU Regulation n. 813/2013.
- 5. Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- Unit without tank and pump.
- N.B. Weights of WP version are specified on technical brochure.

JWH 051÷172 S/K

WATERCOOLED LIQUID CHILLERS AND HEAT PUMPS WITH SCROLL COMPRESSORS AND SHELL AND TUBE EXCHANGERS.

The JWH 051÷172 S/K liquid Chillers and Heat Pumps, with R410A refrigerant, are designed for medium-sized domestic or industrial systems which require medium power, space-saving units and quiet operation. This range is ideal for indoor installation and, equipped with a self-contained structure, it reduces the overall dimensions to a minimum while at the same time making installation and maintenance operations easier. These units are used to remove the heat developed during industrial processes or, combined with Fan Coil units, for the air conditioning of the rooms. They can be supplied with Modbus RTU protocol through RS485 serial interface. Equipped with Scroll compressors and shell and tube exchangers, these units have cooling and hydraulic circuits complete with everything necessary for quick installation and high energy efficiency, even in the version with tank and pump; a series of accessories, factory fitted or supplied separately, like desuperheater and total heat recovery, rounds off the variety of equipment in this product range.

The units are compliant to the ErP Regulation.

On request, units can be supplied with R452B (JWH 051÷172 S/G) or R454B (JWH 051÷172 S/L) refrigerant.

FROM 57 KW TO 196 KW.

VERSION

JWH

Cooling only

JWH/WP

Reversible Heat Pump

JWH/SSL

Super silenced cooling only

JWH/WP/SSL

Super silenced reversible Heat Pump

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Shell and tube type condenser with one circuit on the refrigerant side and one on the water side in 051÷131 models; with two independent circuits on the refrigerant side and one on the water side in 152÷172 models.
- Shell and tube type evaporator with one circuit on the refrigerant side and one on the water side
 in 051÷131 models; with two independent circuits on the refrigerant side and one on the water
 side in 152÷172 models, complete with water differential pressure switch.
- R410A refrigerant. On request R452B or R454B refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors, interface relay and terminals for external connections.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers

SL Unit silencement

RFM Cooling circuit shut-off valve on

discharge line

RFL Cooling circuit shut-off valve on

liquid line

BT Low water temperature kit

HR Desuperheater

HRT Total heat recovery

SP Inertial tank

SPU Inertial tank and single circulating

pump

SPD Inertial tank and double circulating

pump

FE Antifreeze heater for evaporator

FB Antifreeze heater for evaporator

and tank

FU Antifreeze heater for evaporator, tank, single pump and pipes

FD Antifreeze heater for evaporator, tank, double pump and pipes

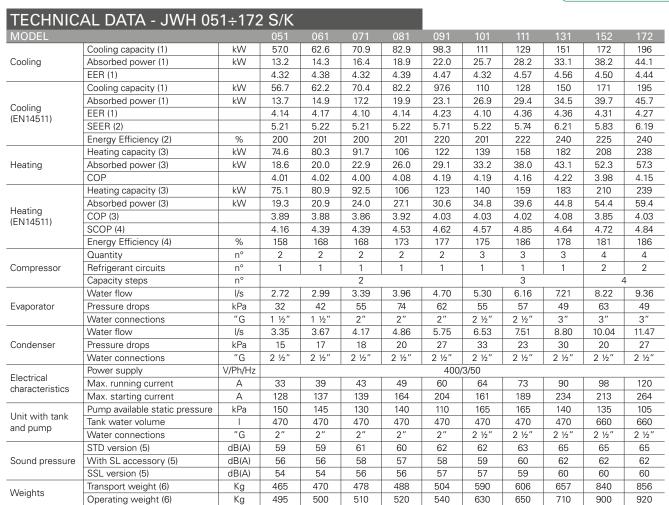
SS Soft start

IS Modbus RTU protocol, RS485 serial interface

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel


PV2 2-Way electronic pressostatic valve PV3 3-Way electronic pressostatic valve

AG Rubber shock absorbers
AM Spring shock absorbers

FL Flow switch

EUROVENT CERTIFIED PERFORMANCE

$D \cap V$	I - I	NIS.
	n = 1	

MODEL			051	061	071	081	091	101	111	131	152	172
L	STD/SSL	mm	2100	2100	2300	2100	2700	2400	2400	2400	2400	2600
W	STD/SSL	mm	830	830	830	830	830	830	830	830	830	830
Н	STD/SSL	mm	1300	1300	1300	1300	1300	1300	1300	1300	1450	1450

CLEARANCE AREA

JWH 051÷172 S/K

500 500 800 1500

- 1. Chilled water from 12 to 7 °C, water temperature at the condenser from 30 to 35 °C.
- Seasonal energy efficiency of cooling at medium temperature. According to EU Regulation n. 2016/2281.
- 3. Heated water from 40 to 45 $^{\circ}$ C, water temperature at the evaporator from 15 to 10 $^{\circ}$ C.
- Seasonal energy efficiency of heating at low temperature with average climatic conditions. According to EU Regulation n. 813/2013.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- 6. Unit without tank and pump.
- N.B. Weights of SSL and WP versions are specified on technical brochure.

JEE 4÷40 S/K/P

CONDENSERLESS LIQUID CHILLERS AND HEAT PUMPS WITH ROTARY/SCROLL COMPRESSOR AND PLATE EXCHANGER.

The liquid Chillers and Heat Pumps for remote condensation of the JEE 4÷40 S/K/P series, with R410A refrigerant, are designed for domestic or service sector systems which require medium power, space-saving units and quiet operation. Combined with remote condenser, these units are ideal for indoor installation and, equipped with a self-contained structure, they reduce the overall dimensions to a minimum while at the same time making installation and maintenance operations easier. Equipped with prepainted plate structure, Rotary/Scroll compressor and plate exchanger, these units have cooling and hydraulic circuits designed for quick installation and high energy efficiency, even in the version with tank and pump.

A wide range of accessories, factory fitted or supplied separately, completes the outstanding versatility and functionality of the series.

FROM 4 KW TO 42 KW.

VERSION

_	_	_
•		
•	E	

Cooling only

JEE/WP

Reversible Heat Pump

JEE/SP

Cooling only with tank and pump

JEE/WP/SP

Reversible Heat Pump with tank and pump

FEATURES

- · Self-supporting prepainted steel frame.
- Rotary/Scroll compressor with internal overheat protection and crankcase heater, if needed.
- Evaporator AISI 316 stainless steel braze welded plates type, complete with water differential pressure switch.
- R410A refrigerant.
- Electrical board includes: main switch with door lock device, fuses, compressor and pump remote control switch.
- Water circuit for SP version includes: insulated tank, circulating pump, safety valve, gauge and expansion vessel.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

BT Low water temperature kit PS Single circulating pump

RL Liquid receiver

FE Antifreeze heater for evaporator FA Antifreeze heater for tank

LOOSE ACCESSORIES:

CR Remote control panel

IS Modbus RTU protocol, RS485 serial

interface

AG Rubber shock absorbers

MODEL	AL DATA - JEE 4÷4		4	5	7	8	9	11	14
MODEL	Cooling conscitu(1)	kW	4.0	5.1	6.2	7.3	8.5	10.1	12.1
Cooling	Cooling capacity (1)	kW	1.4	1.8	2.1	3.0	3.3	3.7	3.3
	Absorbed power (1)	****	** *						
Heating	Heating capacity (2)	kW	5.1	6.4	8.2	9.4	10.7	13.2	15.5
	Absorbed power (2)	kW	1.5	1.9	2.4	2.7	3.0	4.2	4.5
Compressor	Туре	0		1	tary	1		Scroll	
·	Quantity	n°	1	1	1	1	1	1	1
Evaporator	Water flow	l/s	0.19	0.24	0.30	0.35	0.41	0.48	0.58
	Pressure drops	kPa	15	15	20	18	20	25	35
	Water connections	"G	1"	1"	1"	1"	1"	1"	1"
Connections	Delivery line	Ømm	12	12	12	12	12	12	16
	Liquid line	Ømm	10	10	10	10	10	10	12
Electrical	Power supply	V/Ph/Hz		1		/1/50			400/3+N/50
characteristics	Max. running current	А	8	10	13	14	16	22	9
	Max. starting current	А	37	43	62	62	75	86	50
	Water flow	l/s	0.19	0.24	0.30	0.35	0.41	0.48	0.58
Unit SP versions	Pump available static pressure	kPa	50	45	75	70	70	60	180
	Tank water volume	I	50	50	50	50	50	50	50
	Water connections	"G	1"	1"	1"	1"	1"	1"	1"
Sound pressure	STD/SP version (3)	dB(A)	39	39	39	39	41	43	43
Weights	Transport weight (4)	Kg	74	75	77	81	84	87	86
vveignts	Operating weight (4)	Kg	75	76	78	82	85	88	88
MODEL			16	18	20	24	27	34	40
Caaling	Cooling capacity (1)	kW	14.5	17.0	20.0	24.1	28.8	33.9	41.5
Cooling	Absorbed power (1)	kW	5.2	6.0	7.1	7.8	9.3	10.9	13.3
Hanting	Heating capacity (2)	kW	18.5	22.0	25.9	30.4	36.4	43.0	53.2
Heating	Absorbed power (2)	kW	5.5	6.5	7.7	8.3	10.1	11.7	14.2
_	Type					Scroll			
Compressor									
Compressor	Quantity	n°	1	1	1	1	1	1	1
Compressor	Quantity Water flow	n° I/s	1 0.69	0.81	0.96		1 1.38	1 1.62	1.98
<u>'</u>	,			i i	·	1			·
<u>'</u>	Water flow	l/s	0.69	0.81	0.96	1 1.15	1.38	1.62	1.98
Evaporator	Water flow Pressure drops	l/s kPa	0.69	0.81	0.96	1 1.15 40	1.38 45	1.62 40	1.98
Evaporator Connections	Water flow Pressure drops Water connections Delivery line	I/s kPa "G Ø mm	0.69 28 1"	0.81 35 1"	0.96 39 1"	1 1.15 40 1"	1.38 45 1"	1.62 40 1"	1.98 40 1"
Evaporator Connections	Water flow Pressure drops Water connections Delivery line Liquid line	I/s kPa "G Ø mm Ø mm	0.69 28 1" 16	0.81 35 1" 16	0.96 39 1"	1 1.15 40 1" 22	1.38 45 1" 22	1.62 40 1" 22	1.98 40 1" 22
Evaporator Connections Electrical	Water flow Pressure drops Water connections Delivery line Liquid line Power supply	I/s kPa "G Ø mm Ø mm V/Ph/Hz	0.69 28 1" 16	0.81 35 1" 16	0.96 39 1" 16 12	1 1.15 40 1" 22 12 400/3+N/50	1.38 45 1" 22 12	1.62 40 1" 22 12	1.98 40 1" 22 16
Evaporator Connections Electrical	Water flow Pressure drops Water connections Delivery line Liquid line Power supply Max. running current	I/s kPa "G Ø mm Ø mm V/Ph/Hz A	0.69 28 1" 16 12	0.81 35 1" 16 12	0.96 39 1"	1 1.15 40 1" 22 12 400/3+N/50 18	1.38 45 1" 22 12	1.62 40 1" 22	1.98 40 1" 22
Evaporator Connections Electrical	Water flow Pressure drops Water connections Delivery line Liquid line Power supply	l/s kPa "G Ø mm Ø mm V/Ph/Hz A A	0.69 28 1" 16 12	0.81 35 1" 16 12	0.96 39 1" 16 12	1 1.15 40 1" 22 12 400/3+N/50	1.38 45 1" 22 12	1.62 40 1" 22 12	1.98 40 1" 22 16
Evaporator Connections Electrical characteristics	Water flow Pressure drops Water connections Delivery line Liquid line Power supply Max. running current Max. starting current Water flow	l/s kPa "G Ø mm Ø mm V/Ph/Hz A A l/s	0.69 28 1" 16 12 11 71 0.69	0.81 35 1" 16 12 14 74 0.81	0.96 39 1" 16 12 15 74 0.96	1 1.15 40 1" 22 12 400/3+N/50 18 142 1.15	1.38 45 1" 22 12 20 142 1.38	1.62 40 1" 22 12 23 147 1.62	1.98 40 1" 22 16 29 197 1.98
Evaporator Connections Electrical characteristics	Water flow Pressure drops Water connections Delivery line Liquid line Power supply Max. running current Max. starting current Water flow Pump available static pressure	l/s kPa "G Ø mm Ø mm V/Ph/Hz A A	0.69 28 1" 16 12 11 71 0.69 170	0.81 35 1" 16 12 14 74 0.81 140	0.96 39 1" 16 12 15 74 0.96 110	1 1.15 40 1" 22 12 400/3+N/50 18 142 1.15 215	1.38 45 1" 22 12 20 142 1.38 130	1.62 40 1" 22 12 23 147 1.62	1.98 40 1" 22 16 29 197 1.98 235
Evaporator Connections Electrical characteristics	Water flow Pressure drops Water connections Delivery line Liquid line Power supply Max. running current Max. starting current Water flow Pump available static pressure Tank water volume	I/s kPa "G Ø mm Ø mm V/Ph/Hz A I/s kPa	0.69 28 1" 16 12 11 71 0.69 170 50	0.81 35 1" 16 12 14 74 0.81 140 50	0.96 39 1" 16 12 15 74 0.96 110 50	1 1.15 40 1" 22 12 400/3+N/50 18 142 1.15 215 100	1.38 45 1" 22 12 20 142 1.38 130 100	1.62 40 1" 22 12 23 147 1.62 155	1.98 40 1" 22 16 29 197 1.98 235
Evaporator Connections Electrical characteristics Unit SP versions	Water flow Pressure drops Water connections Delivery line Liquid line Power supply Max. running current Max. starting current Water flow Pump available static pressure Tank water volume Water connections	I/s kPa "G Ø mm Ø mm V/Ph/Hz A I/s kPa I "G	0.69 28 1" 16 12 11 71 0.69 170 50 1"	0.81 35 1" 16 12 14 74 0.81 140 50 1"	0.96 39 1" 16 12 15 74 0.96 110 50 1"	1 1.15 40 1" 22 12 400/3+N/50 18 142 1.15 215 100 1"	1.38 45 1" 22 12 20 142 1.38 130 100 1"	1.62 40 1" 22 12 23 147 1.62 155 100	1.98 40 1" 22 16 29 197 1.98 235 100 1"
Evaporator	Water flow Pressure drops Water connections Delivery line Liquid line Power supply Max. running current Max. starting current Water flow Pump available static pressure Tank water volume	I/s kPa "G Ø mm Ø mm V/Ph/Hz A I/s kPa	0.69 28 1" 16 12 11 71 0.69 170 50	0.81 35 1" 16 12 14 74 0.81 140 50	0.96 39 1" 16 12 15 74 0.96 110 50	1 1.15 40 1" 22 12 400/3+N/50 18 142 1.15 215 100	1.38 45 1" 22 12 20 142 1.38 130 100	1.62 40 1" 22 12 23 147 1.62 155	1.98 40 1" 22 16 29 197 1.98 235

DIMEN	SIONS															
MODEL			4	5	7	8	9	11	14	16	18	20	24	27	34	40
1	STD	mm	550	550	550	550	550	550	550	550	550	550	550	550	550	550
L	SP	mm	550	550	550	550	550	550	550	550	550	550	1100	1100	1100	1100
W	STD/SP	mm	550	550	550	550	550	550	550	550	550	550	550	550	550	550
Н	STD/SP	mm	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200

CLEARANCE AREA JEE 4÷40 S/K/P JEE/SP 24÷40 S/K/P 500 800 800 800 500 800 800 800

- Chilled water from 12 to 7 °C, condensing temperature 50 °C. Heated water from 40 to 45 °C, evaporating temperature 0 °C. Sound pressure level measured in free field conditions at 1 m from the unit. 3. According to ISO 3744.

 4. Unit without tank and pump.

 N.B. Weights of WP versions are specified on technical brochure.

JEE 051÷172 S/K/P

CONDENSERLESS LIQUID CHILLERS AND HEAT PUMPS WITH SCROLL COMPRESSORS AND PLATE EXCHANGER.

JEE 051÷172 S/K/P series liquid Chillers and Heat Pumps for remote condensation, with R410A refrigerant, are designed to meet the needs of residential or industrial-type systems requiring high power together with space-saving and quiet operation. These units are ideal for indoor installation and, equipped with a self-contained structure, minimise overall dimensions while also facilitating installation and maintenance operations. Equipped with polyester plate powder painting structure, Scroll compressors and plate exchanger they have refrigerant and hydraulic circuits, even in the version with tank, with pump or tank and pump, complete with everything necessary for quick installation operations and for high energy efficiencies. A number of accessories, factory fitted or supplied separately, such as the desuperheater or the total heat recovery, enhance and complete the equipment of this range.

FROM 51 KW TO 176 KW.

VERSION

JEE

Cooling only

JEE/WP

Reversible Heat Pump

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Evaporator AISI 316 stainless steel braze welded plates type with one circuit on the refrigerant side and one on the water side in 051÷131 models; with two independent circuits on the refrigerant side and one on the water side in 152÷172 models, complete with water differential pressure switch.
- R410A refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors, interface relay and terminals for external connections.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers

SL Unit silencement

RFM Cooling circuit shut-off valve on

discharge line

RFL Cooling circuit shut-off valve on

liquid line

BT Low water temperature kit

DS Desuperheater

RT Total heat recovery

FE Antifreeze heater for evaporator
FO Antifreeze heater for tank and pipes

SS Soft start

IS Modbus RTU protocol, RS485 serial

interface

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel

SPU Inertial tank and single circulating

pump

SPD Inertial tank and double circulating

pump

AG Rubber shock absorbers

AM Spring shock absorbers

TECHNIC.	AL DATA - JEE 051	÷172	S/K/P									
MODEL			051	061	071	081	091	101	111	131	152	172
Caalina	Cooling capacity (1)	kW	50.8	57.1	64.3	73.6	87.1	98.8	114	134	149	176
Cooling	Absorbed power (1)	kW	15.4	17.3	19.0	21.6	25.8	29.4	32.9	38.7	43.5	51.5
Heating	Heating capacity (2)	kW	59.5	65.8	74.3	84.7	96.5	107	122	148	157	194
- reating	Absorbed power (2)	kW	18.0	20.0	22.3	24.7	27.8	32.8	37.2	41.1	50.8	56.5
	Quantity	n°	2	2	2	2	2	3	3	3	4	4
Compressor	Refrigerant circuits	n°	1	1	1	1	1	1	1	1	2	2
	Capacity steps			2				3		4	1	
	Water flow	l/s	2.43	2.73	3.07	3.52	4.16	4.72	5.42	6.41	7.10	8.41
	Pressure drops	kPa	47	42	41	42	40	48	44	51	41	40
	Water connections	"G	1 ¼"	1 ¼"	1 ¼"	1 ¼"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"
Connections –	Delivery line	Ø mm	28	28	28	28	28	28	28	28	2 x 28	2 x 28
	Liquid line	Ø mm	22	22	22	22	22	22	22	22	2 x 22	2 x 22
Electrical	Power supply	V/Ph/Hz					400/	3/50				
characteristics	Max. running current	А	33	39	43	49	60	64	73	90	98	120
Characteristics	Max. starting current	А	128	137	139	164	204	161	189	234	213	264
Unit with tank	Pump available static pressure	kPa	105	110	100	135	120	130	120	110	120	100
and pump	Tank water volume	I	300	300	300	300	300	300	300	300	300	300
ана раттр	Water connections	"G	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"	2 ½"
Sound pressure	STD version (3)	dB(A)	59	59	60	60	62	61	61	63	64	64
	With SL accessory (3)	dB(A)	56	56	57	57	59	58	58	60	61	61
Weights	Transport weight (4)	Kg	347	357	376	386	397	562	581	595	669	708
vveigins	Operating weight (4)	Kg	350	360	380	390	405	570	590	605	680	720

	NSI	\bigcirc	$\mathbf{I} \cap$
 \mathbf{n}			
 $\mathbf{w} =$			

MODEL			051	061	071	081	091	101	111	131	152	172
UNIT	L	mm	1200	1200	1200	1200	1200	2285	2285	2285	2285	2285
	W	mm	680	680	680	680	680	680	680	680	680	680
	Н	mm	1520	1520	1520	1520	1520	1520	1520	1520	1520	1520
UNIT + SPU/SPD	L	mm	2310	2310	2310	2310	2310	3395	3395	3395	3395	3395
	W	mm	680	680	680	680	680	680	680	680	680	680
	Н	mm	1520	1520	1520	1520	1520	1520	1520	1520	1520	1520

CLEARANCE AREA

JEE 051÷172 S/K/P 0 300 800 300

- Chilled water from 12 to 7 °C, condensing temperature 50 °C.
 Heated water from 40 to 45 °C, evaporating temperature 0 °C.
 Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
 Unit without tank and pump.
 N.B. Weights of WP version are specified on technical brochure.

JWH 081÷171 VV/H/P/A

A CLASS ENERGY EFFICIENCY WATERCOOLED LIQUID CHILLERS WITH (INVERTER) SCREW COMPRESSOR AND PLATE EXCHANGERS.

The liquid Chillers of the JWH 081÷171 VV/H/P/A series, with A CLASS energy efficiency and HFO-R1234ze refrigerant, are designed to satisfy the needs of the service sector or industrial systems requiring high power.

The latest generation refrigerant HFO-R1234ze, with GWP<1 (Global Warming Potential), is the most environmentally sustainable refrigerant on the market, and meets the strictest international environmental regulations.

Equipped with latest generation Screw compressor and plate exchangers, these units have a series of accessories which are factory fitted or supplied separately. Designed and produced to optimize the layout of each component so as to make any necessary maintenance operations more convenient, these units have an essential and compact structure intended for indoor installation. Furthermore, accessories as the Inverter control on one compressor is also available for getting the highest efficiency at part load and a significant reduction of starting current.

The units are compliant to the ErP 2021 Regulation.

FROM 86 KW TO 189 KW.

idroinverter

VERSION

JWH

Cooling only

JWH/SSL

Super silenced cooling only

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Screw compressor with built-in oil separator, suction filter, crankcase heater, oil sight glass, thermal protection and stepless capacity steps.
- Condenser AISI 316 stainless steel braze welded plates type with one circuit on the refrigerant side and one on the water side
- Evaporator AISI 316 stainless steel braze welded plates type with one circuit on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- HFO-R1234ze refrigerant.

IS

- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relay for compressor.
- Microprocessor control and regulation system.

Modbus RTU protocol, RS485 serial

ACCESSORIES

Soft start

FACTORY FITTED ACCESSORIES:

IM	Automatic circuit breakers
ВТ	Low water temperature kit
RT	Total heat recovery
FE	Antifreeze heater for evaporator
FO	Antifreeze heater for tank and pipes
IO	Inverter on one compressor

DP Device for heat pump operation HTW Device for high temperature hot water production.

WM Web Monitoring - Wireless remote monitoring (GPRS/EDGE/3G/TCP-IP)

IST	Modbus TCP/IP protocol, Ethernet port
ISB	BACnet MSTP protocol, RS485 serial
	interface
ISBT	BACnet TCP/IP protocol, Ethernet port
ISL	LonWorks protocol, FTT-10 serial
	interface
ISS	SNMP protocol, Ethernet port
IAV	Remote set-point, 0-10 V signal
IAA	Remote set-point, 4-20 mA signal
IAS	Remote signal for second set-point
	activation
IDL	Demand limit from digital input

Potential free contacts

LOOSE ACCESSORIES:

MN	High and low pressure gauges
CR	Remote control panel
SPU	Inertial tank and single circulating
	pump
SPD	Inertial tank and double circulating
	pump
PV2	2-Way electronic pressostatic valve
PV3	3-Way electronic pressostatic valve
AG	Rubber shock absorbers
AM	Spring shock absorbers

SS

TECHNIC	AL DATA - JWH 08	1÷171	VV/H/P/A					
MODEL			081	101	131	171		
	Cooling capacity (1)	kW	86.4	115	152	189		
Cooling	Absorbed power (1)	kW	16.8	21.7	28.9	35.2		
	EER (1)		5.14	5.30	5.26	5.37		
	Cooling capacity (1)	kW	86.3	115	152	189		
0 1:	Absorbed power (1)	kW	17.0	22.0	29.3	36.0		
Cooling (EN14511)	EER (1)		5.08	5.23	5.19	5.25		
(EIN14511)	SEER (2)		5.51	5.49	5.55	5.60		
	Energy Efficiency (2)	%	212	212	214	216		
	Quantity	n°	1	1	1	1		
Compressor	Refrigerant circuits	n°	1	1	1	1		
	Capacity steps	n°		St	epless			
Evaporator	Water flow	l/s	4.13	5.49	7.26	9.03		
	Pressure drops	kPa	13	14	13	15		
	Water connections	"G	2 ½"	2 ½"	3"	3"		
	Water flow	l/s	4.93	6.52	8.60	10.66		
Condenser	Pressure drops	kPa	12	11	12	19		
	Water connections	"G	2 ½"	2 ½"	3"	3"		
FI	Power supply	V/Ph/Hz		40	400/3/50			
Electrical characteristics	Max. running current	Α	93	92	122	141		
Characteristics	Max. starting current	Α	172	183	268	317		
11.5 51.4	Pump available static pressure	kPa	165	125	125	80		
Unit with tank	Tank water volume	ı	300	300	300	300		
and pump	Water connections	"G	2 ½"	2 ½"	3"	3"		
Caunal property	STD version (3)	dB(A)	74	75	75	76		
Sound pressure	SSL version (3)	dB(A)	70	71	71	72		
\\/aishta	Transport weight (4)	Kg	922	1189	1390	1506		
Weights	Operating weight (4)	Kg	960	1280	1490	1610		

D^{II}	$\Lambda \Gamma \Gamma$	JOI	\bigcirc	JIC.
ווט	MEI	NDI	UΙ	VD.

MOD	EL		081	101	131	171
	UNIT	mm	2800	2800	2800	2800
L	UNIT + SPU/SPD	mm	3910	3910	3910	3910
W	UNIT	mm	730	730	730	730
VV	UNIT + SPU/SPD	mm	730	730	730	730
ш	UNIT	mm	1620	1620	1620	1620
П	UNIT + SPU/SPD	mm	1620	1620	1620	1620

JWH 081÷171 VV/H/P/A 0 | 300 | 800 | 300

- 1. Chilled water from 12 to 7 °C, water temperature at the condenser from 30 to
- 2. Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- 3. Sound pressure level measured in free field conditions at 1 m from the unit.
- According to ISO 3744.

 4. Unit without tank and pump.

 N.B. Weights of SSL version are specified on technical brochure.

JCA 4÷40 S/K

AIRCOOLED CONDENSING UNITS AND REVERSIBLE CONDENSING UNITS WITH AXIAL FANS AND ROTARY/SCROLL COMPRESSOR.

The condensing units and reversible condensing units of the JCA $4 \div 40$ S/K series, with R410A refrigerant, are designed for small and medium-sized domestic or industrial systems.

With a peraluman structure, these outdoor units are combined with evaporators in split system air conditioning installations, allowing the rooms to be cooled and dehumidified or to be heated. They can also be used in combination with hydronic evaporating units, generally in air conditioning applications. They are equipped with Rotary/Scroll compressors and axial fans, and they enable immediate and efficient use thanks to particular technical and design adjustments.

A wide range of accessories, factory fitted or supplied separately, completes the outstanding versatility and functionality of the series.

FROM 4.5 KW TO 46 KW.

VERSION

JCA

Cooling only

JCA/WP

Reversible Heat Pump

FEATURES

- Structure with supporting frame, in peraluman and galvanized sheet.
- Rotary/Scroll compressor with internal overheat protection and crankcase heater, if needed.
- Axial fans with low ventilation and special wing profile, directly coupled to external rotor motors.
- Condenser in copper tubes and aluminium finned coil complete with drain pan for WP version only (4÷20).
- R410A refrigerant.
- Electrical board includes: main switch with door lock device, fuses and compressor remote control switch.
- Microprocessor control and regulation system (WP only).

ACCESSORIES

FACTORY FITTED ACCESSORIES:

CC Condensing control down to -20 °C

TX Coil with pre-coated fins

RL Liquid receiver VS Solenoid valve

LOOSE ACCESSORIES:

RP Coils protection metallic guards

FP Coils protection metallic guards

with filter

AG Rubber shock absorbers

MODEL			4	5	7	8	9	11	14	
	Cooling capacity (1)	kW	4.5	5.6	6.8	8.0	9.2	10.8	13.2	
Cooling	Absorbed power (1)	kW	1.4	1.8	2.1	2.5	2.9	3.7	4.1	
	Heating capacity (2)	kW	4.8	5.9	7.3	8.4	9.7	11.3	13.7	
Heating	Absorbed power (2)	kW	1.5	1.9	2.3	2.6	3.0	3.8	4.2	
	Quantity	n°	1	1	1	1	1	1	1	
Compressor	Type		· ·	Ro	tary			Scroll		
	Suction line	Ømm	16	16	16	16	16	16	18	
Connections	Liquid line	Ømm	10	10	10	10	10	10	12	
	Power supply	V/Ph/Hz			230)/1/50	1/50 400/3			
Electrical	Max. running current	A	7	9	11	11	15	18	7	
characteristics	Max. starting current	А	37	43	62	62	79	86	58	
Sound pressure	· · · · · · · · · · · · · · · · · · ·	dB(A)	49	50	49	51	53	54	54	
	Transport weight	Kg	81	83	83	87	90	92	109	
Weights	Operating weight	Kg	82	84	84	88	91	93	111	
MODEL			16	18	20	24	27	34	40	
	Cooling capacity (1)	kW	15.8	19.1	21.2	26.4	30.9	36.6	45.9	
Cooling	Absorbed power (1)	kW	5.1	6.2	7.1	8.6	9.2	11.5	14.2	
	Heating capacity (2)	kW	16.8	19.9	22.0	27.4	33.2	40.9	51.9	
Heating	Absorbed power (2)	kW	5.3	6.4	7.3	8.8	9.8	11.9	15.2	
0	Quantity	n°	1	1	1	1	1	1	1	
Compressor	Type					Scroll				
O	Suction line	Ø mm	18	22	22	28	28	28	28	
Connections	Liquid line	Ø mm	12	12	12	12	12	12	16	
=1	Power supply	V/Ph/Hz		'		400/3+N/50			•	
Electrical characteristics	Max. running current	А	10	10	12	23	29	30	39	
anacteristics	Max. starting current	Α	61	58	74	142	147	142	167	
Sound pressure	(3)	dB(A)	54	55	56	59	61	61	61	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Transport weight	Kg	111	113	115	218	232	252	266	
Weights	Operating weight	Kg	114	116	118	221	235	256	271	

DIMEN	SIONS															
MODEL			4	5	7	8	9	11	14	16	18	20	24	27	34	40
L	STD	mm	870	870	870	870	870	870	1160	1160	1160	1160	1850	1850	1850	1850
W	STD	mm	320	320	320	320	320	320	500	500	500	500	1000	1000	1000	1000
Н	STD	mm	1100	1100	1100	1100	1100	1100	1270	1270	1270	1270	1300	1300	1300	1300

CLEARANCE AREA JCA 4÷11 S/K

200 | 200 | 800 | 200

JCA 14÷20 S/K 200 | 200 | 800 | 200 JCA 24÷40 S/K 500 | 800 | 800 | 800

- 1. Average evaporating temperature 5 °C, ambient air temperature 35 °C.
- 2. Average condensing temperature 40 °C, ambient air temperature 7 °C d h /6 °C w h
- air temperature 7 °C d.b./6 °C w.b.

 3. Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- ISO 3744.

 N.B. Weights of WP version are specified on technical brochure.

JCA 051÷172 S/K

AIRCOOLED CONDENSING UNITS AND REVERSIBLE CONDENSING UNITS WITH AXIAL FANS AND SCROLL COMPRESSORS.

The condensing units and reversible condensing units of the JCA 051÷172 S/K series, with R410A refrigerant, are designed to satisfy the needs of medium and large-sized domestic or industrial systems.

These outdoor units are combined with evaporators in split system air conditioning installations, allowing the rooms to be cooled and dehumidified or to be heated. They can also be used in combination with hydronic evaporating units in both air conditioning and industrial process cooling applications. They are equipped with Scroll compressors and axial fans, and they enable immediate and efficient use thanks to particular technical and design adjustments.

A wide range of accessories, factory fitted or supplied separately, completes the outstanding versatility and functionality of the series.

FROM 51 KWTO 188 KW.

VERSION

JCA

Cooling only

JCA/WP

Reversible Heat Pump

JCA/SSL

Super silenced cooling only

JCA/WP/SSL

Super silenced reversible Heat Pump

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tubes and aluminium finned coil.
- R410A refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors and thermocontacts for fans.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers

SL Unit silencement

RFM Cooling circuit shut-off valve on

discharge line

RFL Cooling circuit shut-off valve on

liquid line

CT Condensing control down to 0 °C

CC Condensing control down to -20 °C

EC EC Inverter fans

TX Coil with pre-coated fins

RL Liquid receiver

VS Solenoid valve BP Hot gas by-pass valve

FF Dryer filter and sight glass

SS Soft start

IS Modbus RTU protocol, RS485

serial interface

CP Potential free contacts

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel

RP Coils protection metallic guards

FP Coils protection metallic guards

with filter

AG Rubber shock absorbers

AM Spring shock absorbers

TECHNIC	AL DATA - JCA 05	1÷172	S/K									
MODEL			051	061	071	081	091	101	111	131	152	172
Caaling	Cooling capacity (1)	kW	50.6	58.6	66.9	77.2	88.4	102	117	134	156	188
Cooling	Absorbed power (1)	kW	17.4	19.7	22.5	25.8	29.5	34.2	39.2	45.6	53.2	63.2
Heating	Heating capacity (2)	kW	55.5	63.5	73.6	83.9	94.5	109	125	142	162	193
пеаші	Absorbed power (2)	kW	14.7	16.0	19.1	21.7	24.4	27.9	32.7	36.6	41.7	49.5
	Quantity	n°	2	2	2	2	2	3	3	3	4	4
Compressor	Refrigerant circuits	n°	1	1	1	1	1	1	1	1	2	2
	Capacity steps	n°			2				3		4	1
Connections	Suction line	Ø mm	1x35	1x35	1x35	1x35	1x35	1x42	1x42	1x42	2x35	2x35
Connections	Liquid line	Ø mm	1x22	1x22	1x22	1x22	1x22	1x28	1x28	1x28	2x22	2x22
Florence	Power supply	V/Ph/Hz					400,	3/50				
Electrical characteristics	Max. running current	А	40	43	52	56	65	75	85	98	111	132
Gialacteristics	Max. starting current	А	163	165	175	188	232	199	218	265	243	299
	STD version (3)	dB(A)	61	61	64	64	65	66	68	68	69	70
Sound pressure	With SL accessory (3)	dB(A)	59	59	62	62	63	64	66	66	67	68
	SSL version (3)	dB(A)	57	57	60	60	61	62	63	63	64	
Weights	Transport weight	Kg	550	575	615	625	670	770	800	830	980	1090
vveignis	Operating weight	Kg	560	585	625	635	680	785	815	845	1005	1120

DIMENSIONS

MODEL			051	061	071	081	091	101	111	131	152	172
1	STD	mm	2350	2350	2350	2350	2350	2350	2350	2350	3550	3550
L	SSL	mm	2350	2350	2350	2350	2350	2350	3550	3550	3550	
W	STD/SSL	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Н	STD/SSL	mm	1920	1920	1920	1920	2220	2220	2220	2220	2220	2220

JCA 051÷172 S/K 300 800 800 1800

- Average evaporating temperature 5 °C, ambient air temperature 35 °C.
 Average condensing temperature 40 °C, ambient air temperature 7 °C d.b./6 °C w.b.
 Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
 N.B. Weights of SSL and WP versions are specified on technical brochure.

JCR 4+34 S/K

AIRCOOLED CONDENSING UNITS AND REVERSIBLE CONDENSING UNITS WITH RADIAL FANS AND ROTARY/SCROLL COMPRESSOR FOR INDOOR DUCTED INSTALLATION.

The indoor condensing units and reversible condensing units of the JCR 4÷34 S/K series, with R410A refrigerant, are intended to satisfy the needs of small and medium-sized domestic or industrial systems with particular difficulty in positioning units outside the building.

With a prepainted plate structure, these units are combined with evaporators in split system air conditioning installations, allowing the rooms to be cooled and dehumidified or to be heated. They can also be used in combination with hydronic evaporating units, generally in air-conditioning applications. They are equipped with Rotary/Scroll compressors and radial fans, with appreciable useful head, and they enable immediate and efficient use thanks to particular technical and design adjustments. A wide range of accessories, factory fitted or supplied separately, completes the outstanding versatility and functionality of the series.

FROM 4.5 KW TO 37 KW.

VERSION

JCR

Cooling only

JCR/WP

Reversible Heat Pump

FEATURES

- · Self-supporting prepainted steel frame.
- Rotary/Scroll compressor with internal overheat protection and crankcase heater, if needed.
- Double inlet radial fan statically and dynamically balanced directly driven by a electric motor (4÷20) or belt driven connected to a three-phase electric motor (24÷34).
- Condenser in copper tubes and aluminium finned coil, complete with drain pan for WP version only.
- R410A refrigerant.
- Electrical board includes: main switch with door safety interlock, fuse and compressor remote control switch.
- Microprocessor control and regulation system (WP only).

ACCESSORIES

FACTORY FITTED ACCESSORIES:

CC Condensing control down to -20 °C

TX Coil with pre-coated fins

RL Liquid receiver VS Solenoid valve

LOOSE ACCESSORIES:

RP Coils protection metallic guards

FP Coils protection metallic guards

with filter

AG Rubber shock absorbers

MODEL								11	14		
Caalina	Cooling capacity (1)	kW	4.5	5.6	6.8	8.0	9.2	10.8	13.2		
Cooling	Absorbed power (1)	kW	1.5	1.9	2.2	2.6	3.0	3.8	4.9		
Heating capacity (2)		kW	4.8	5.9	7.3	8.4	9.7	11.3	13.7		
Heating	Absorbed power (2)	kW	1.6	2.0	2.4	2.7	3.1	3.9	5.0		
	Quantity	n°	1	1	1	1	1	1	1		
Compressor	Туре			Rot	ary			Scroll			
	Suction line	Ø mm	16	16	16	16	16	16	18		
Connections	Liquid line	Ø mm	10	10	10	10	10	10	12		
vailable static p	pressure	Pa	90	90	80	80	80	80	115		
	Power supply	V/Ph/Hz			230)/1/50	'	400/3+N/50			
lectrical haracteristics	Max. running current	А	10	12	13	14	17	21	11		
naracteristics	Max. starting current	А	40	46	65	65	82	89	61		
Sound pressure	(3)	dB(A)	51	51	51	52	53	54	59		
Najahta	Transport weight	Kg	120	121	123	126	131	133	190		
Veights	Operating weight	Kg	121	122	124	127	132	134	192		
MODEL			16	18	2	0	24	27	34		
Cooling	Cooling capacity (1)	kW	15.8	19.1	21.2		26.4	30.9	36.6		
Jooling	Absorbed power (1)	kW	5.9	7.0	7.	9	10.3	10.4	13.5		
laatina	Heating capacity (2)	kW	16.8	19.9	22	.0	27.4	33.2	40.9		
leating	Absorbed power (2)	kW	6.1	7.2	8.	1	10.5	11.0	13.9		
	Quantity	n°	1	1	1		1	1	1		
Compressor	Туре				'	Scroll			'		
	Suction line	Ø mm	18	22	2:	2	28	28	28		
Connections	Liquid line	Ø mm	12	12	1:	2	12	12	12		
Available static p	pressure	Pa	115	115	11	5	150	150	160		
	Power supply	V/Ph/Hz				400/3+N	/50				
lectrical	Max. running current	А	14	14	1	5	27	33	36		
haracteristics	Max. starting current	А	64	61	7	7	146	151	148		
ound pressure	(3)	dB(A)	59	60	6	0	62	62	64		
٠ ٨ / - : - ا- + -	Transport weight	Kg	200	202	20)4	313	319	334		
Neights	Operating weight	Kg	203	205	20		316	322	338		

DIMEN	SIONS														
MODEL			4	5	7	8	9	11	14	16	18	20	24	27	34
L	STD	mm	900	900	900	900	900	900	900	900	900	900	1500	1500	1500
W	STD	mm	550	550	550	550	550	550	690	690	690	690	800	800	800
Н	STD	mm	1425	1425	1425	1425	1425	1425	1725	1725	1725	1725	1425	1425	1425

CLEARANCE AR	EA	
JCR 4÷11 S/K	JCR 14÷20 S/K	JCR 24÷34 S/K
100 800 800 800	100 800 800 1000	1200 800 800 100
ACTK II	ATTR	ACTH.

NOTE

- 1. Average evaporating temperature 5 °C, ambient air temperature 35 °C.
- 2. Average condensing temperature 40 °C, ambient air temperature 7 °C d.b./6 °C w.b.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of WP version are specified on technical brochure.

JCR 051÷172 S/K

AIRCOOLED CONDENSING UNITS AND REVERSIBLE CONDENSING UNITS WITH RADIAL FANS AND SCROLL COMPRESSORS.

The indoor condensing units and reversible condensing units of the JCR 051÷172 S/K series, with R410A refrigerant, are designed to satisfy the needs of medium-sized domestic or industrial systems with particular difficulty in positioning units outside the building.

These units are combined with evaporators in split system air conditioning installations, allowing the rooms to be cooled and dehumidified or to be heated. They can also be used in combination with hydronic evaporating units in both air conditioning and industrial process cooling applications.

They are equipped with Scroll compressors and radial fans even in a high ESP version, and they enable immediate and efficient use thanks to particular technical and design adjustments.

A wide range of accessories, factory fitted or supplied separately, completes the outstanding versatility and functionality of the series.

FROM 51 KWTO 188 KW.

VERSION

JCR

Cooling only

JCR/AP

Cooling only with high ESP fans

JCR/WP

Reversible Heat Pump

JCR/WP/AP

Reversible Heat Pump with high ESP fans

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Radial type fans coupled to 3-phase motors by V belt and variable pulley.
- Condenser made of copper tubes and aluminium finned coil.
- R410A refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors and thermocontacts for fans.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers

SL Unit silencement

RFM Cooling circuit shut-off valve on

discharge line

RFL Cooling circuit shut-off valve on

liquid line

CC Condensing control down to -20 °C

TX Coil with pre-coated fins

RL Liquid receiver

VS Solenoid valve

BP Hot gas by-pass valve

FF Dryer filter and sight glass

SS Soft start

IS Modbus RTU protocol, RS485

serial interface

CP Potential free contacts

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel

RP Coils protection metallic guards

FP Coils protection metallic guards

with filter

AG Rubber shock absorbers

AM Spring shock absorbers

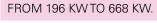
TECHNIC	AL DATA - JCR 051	+172	S/K									
MODEL			051	061	071	081	091	101	111	131	152	172
Caalina	Cooling capacity (1)	kW	50.6	58.6	66.9	77.2	88.4	102	117	134	156	188
Cooling	Absorbed power (1)	kW	18.3	21.4	24.9	28.2	31.9	36.6	43.2	49.6	58.2	69.2
Heating	Heating capacity (2)	kW	55.5	63.5	73.6	83.9	94.5	109	125	142	162	193
neating	Absorbed power (2)	kW	15.6	17.7	21.5	24.1	26.8	30.3	36.7	40.6	46.7	55.5
	Quantity	n°	2	2	2	2	2	3	3	3	4	4
Compressor	Refrigerant circuits	n°	1	1	1	1	1	1	1	1	2	2
	Capacity steps	n°			2				3		4	4
Cannactions	Suction line	Ø mm	1x35	1x35	1x35	1x35	1x35	1x42	1x42	1x42	2x35	2x35
Connections	Liquid line	Ø mm	1x22	1x22	1x22	1x22	1x22	1x28	1x28	1x28	2x22	2x22
Available static	STD version	Pa	165	147	120	120	105	115	135	135	190	105
pressure	High ESP version	Pa	298	288	263	263	245	256			400	
EL	Power supply	V/Ph/Hz		400/3/50								
Electrical characteristics	Max. running current	Α	43	48	57	61	70	80	94	107	122	146
Characteristics	Max. starting current	Α	166	169	180	193	237	204	227	275	255	313
	STD version (3)	dB(A)	70	70	70	70	71	73	74	74	75	76
	STD version with SL accessory (3)	dB(A)	68	68	68	68	69	71	72	72	73	74
Sound pressure	High ESP version (3)	dB(A)	71	71	71	71	72	74			76	
	High ESP version with SL accessory (3)	dB(A)	69	69	69	69	70	72			74	
Weights	Transport weight	Kg	595	600	670	680	725	825	865	895	1080	1185
vveigiits	Operating weight	Kg	605	610	680	690	735	840	880	910	1105	1215

DIMENSIONS

MODEL			051	061	071	081	091	101	111	131	152	172
L	STD/AP	mm	2350	2350	2350	2350	2350	2350	2350	2350	3550	3550
W	STD/AP	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Н	STD/AP	mm	1705	1705	1705	1705	2005	2005	2005	2005	2005	2005

JCR 051÷172 S/K 300 800 800 1800

- Average evaporating temperature 5 °C, ambient air temperature 35 °C.
 Average condensing temperature 40 °C, ambient air temperature 7 °C d.b./6 °C w.b.
 Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
 N.B. Weights of WP versions are specified on technical brochure.


Aircooled, Watercooled & Condenserless liquid Chillers and Heat Pumps for wide areas.

TWA 202÷702 S/IK/P/A	84 - 85
TWA 212÷682 S/K/P/AF	86 - 87
TWA/WP 212÷682 S/K/P/A	88 - 89
TWA 212÷1102 S/K/P	90 - 91
TWA/FC 212÷1102 S/K/P	92 - 93
TWA 212÷1102 S/K	94 - 95
TWA 202÷1352 VV/H/A	96 - 97
TWA/FC 202÷1062 VV/H	98 - 99
TWA 332÷1342 VV/Y/A	100 - 101
TWA/FC 302÷1622 VV/Y	102 - 103
TWA/EP 172÷632 S/K/P	104 - 105
TWA/EP 362÷1492 VV/Y	106 - 107
TWA 281÷1432TT/H	108 - 109
TWA/FC 281÷1432TT/H	110 - 111
TWA 251÷1502TT/Y	112 - 113
TWA/FC 251÷1502TT/Y	114 - 115
TWH 212÷342 S/K/P	116 - 117
TWH 212÷342 S/K	118 - 119
TWH 202÷1352 VV/H/A	120 - 121
TWH 321÷1321 VV/Y/A	122 - 123
TWH 252-T÷2122-T VV/Y/A	124 - 125
TWH 322÷2582 VV/Y	126 - 127
TEE 322÷2582 VV/Y	128 - 129
TWH 341÷2061 TT/H	130 - 131
TWH/DR 341÷2061TT/H	132 - 133
TWH 291÷4061TT/Y	134 - 135
TWH/DR 291÷1541TT/Y	136 - 137

VERSION

TWA

Cooling only

TWA/MC

Cooling only with MICROCHANNEL condensing coils

TWA/WP

Reversible Heat Pump

TWA/SSL

Super silenced cooling only

TWA/MC/SSL

Super silenced cooling only with MICROCHANNEL condensing coils

TWA/WP/SSL

Super silenced reversible Heat Pump

TWA 202÷702 S/IK/P/A

A CLASS ENERGY EFFICIENCY AIRCOOLED LIQUID CHILLERS AND HEAT PUMPS WITH AXIAL FANS, INVERTER SCROLL COMPRESSORS AND PLATE EXCHANGER

The A CLASS energy efficiency liquid Chillers and Heat Pumps of the TWA 202÷702 S/IK/P/A series, with R410A refrigerant, are designed to satisfy the needs of medium and wide-sized service sector

They are used, combined with Fan Coil units, for the air conditioning or heating of the rooms or to remove the heat developed during industrial processes.

All units feature A CLASS energy efficiency and are equipped with Inverter control on Scroll compressor for a better efficiency at partial loads (SEER/SCOP). The Microchannel condensing coils, available on dedicated versions, ensure an even higher efficiency (high EER), having a better heat exchange than traditional coils. Furthermore, Inverter control is also available on circulating pumps and fans (EC Inverter) for a further efficiency improvement.

The units are characterized by multi-compressor design on double cooling circuit, to reach high energy performances, reduction of current at start-up, elimination of inertial tanks and excellent silent functioning. The use of components built in large series makes them highly reliable and the management of an high number of compressors allows increased life span with reduction of machine stopping risks and easier maintenance operations. A wide range of accessories, factory fitted or supplied separately, complete the outstanding versatility and functionality of the series. Are available as option the new EC Inverter fans with high available static pressure and efficiency. The Heat Pump versions are designed for hot water production up to 55 °C.

The units are compliant to the ErP Regulation.

On request, units can be supplied with R452B (TWA 202÷702 S/IG/P/A) or R454B (TWA 202÷702 S/IL/P/A) refrigerant.

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- DC INVERTER Scroll and ON-OFF Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tube and aluminum finned coils or aluminium MICROCHANNEL coils.
- Evaporator AISI 316 stainless steel braze welded plates type with two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch. On the Heat Pump units it is always installed an antifreeze heater.
- Cooling circuit shut-off valve on liquid line in 302÷702 models.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R410A refrigerant. On request R452B or R454B refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses or magnetothermic switches, thermal protection relays for compressors and thermocontacts for fans.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C in cooling mode. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, high and low pressure transducers on cooling circuit and an electrical heater on electrical board.
- Functioning in heating mode with outside air temperature down to -15 °C.
- Microprocessor control and regulation system.

FACTORY FITTED ACCESSORIES:

INA Automatic circuit breakers

SL Unit silencement

ACCESSORIES

RFM Cooling circuit shut-off valve on discharge line

RFL Cooling circuit shut-off valve on liquid line

ВТ Low water temperature kit

EC EC Inverter fans

FCH EC Inverter fans with high available static pressure

DS Desuperheater Total heat recovery

RT TX Coil with pre-coated fins

- TXB Coil with epoxy treatment
- ΕW External water connections
- PS Single circulating pump
- PSI Inverter single circulating pump
- PD Double circulating pump
- Inverter double circulating pump PDI
- FΕ Antifreeze heater for evaporator
- FΝ Antifreeze heater for pipes
- FG Antifreeze heater for single pump and pipes
- Antifreeze heater for double pump FM and pipes
- Modbus RTU protocol, RS485 serial IS interface
- IST Modbus TCP/IP protocol, Ethernet port
- ISB BACnet MSTP protocol, RS485 serial interface
- **ISBT** BACnet TCP/IP protocol, Ethernet port

- ISL LonWorks protocol, FTT-10 serial interface
- ISS SNMP protocol, Ethernet port IAV Remote set-point, 0-10 V signal
- IAA Remote set-point, 4-20 mA signal IAS Remote signal for second set-point activation
- IDL Demand limit from digital input

LOOSE ACCESSORIES:

- MN High and low pressure gauges
- CR Remote control panel
- RP Coils protection metallic guards
- FΡ Coils protection metallic guards with filter
- AG Rubber shock absorbers
- AM Spring shock absorbers

TECHNIC	AL DATA -TWA 202	2÷702	S/IK/	P/A								
MODEL			202	242	302	332	372	402	442	482	542	702
	Cooling capacity (1)	kW	196	234	287	316	349	383	422	458	515	668
Cooling STD	Absorbed power (1)	kW	61	73	90	98	109	120	133	144	163	211
versions	EER (1)		3.21	3.21	3.19	3.22	3.20	3.19	3.17	3.18	3.16	3.17
	Cooling capacity (1)	kW	195	233	286	315	348	382	421	457	514	666
Cooling STD	Absorbed power (1)	kW	62	74	91	99	110	121	134	145	164	213
versions	EER (1)		3.15	3.15	3.14	3.18	3.16	3.16	3.14	3.15	3.13	3.13
(EN14511)	SEER (2)		4.39	4.40	4.44	4.45	4.41	4.55	4.67	4.70	4.68	4.67
	Energy Efficiency (2)	%	173	173	175	175	173	179	184	185	184	184
	Cooling capacity (1)	kW	196	234	287	316	349	383	422	458	515	668
Cooling MC	Absorbed power (1)	kW	60	72	89	97	108	119	132	143	161	209
versions	EER (1)		3.27	3.25	3.22	3.26	3.23	3.22	3.20	3.20	3.20	3.20
-	Cooling capacity (1)	kW	195	233	286	315	348	382	421	457	514	666
Cooling MC	Absorbed power (1)	kW	61	73	90	98	109	120	133	144	162	211
versions	EER (1)		3.20	3.19	3.18	3.21	3.19	3.18	3.17	3.17	3.17	3.16
(EN14511)	SEER (2)		4.44	4.45	4.49	4.50	4.46	4.60	4.73	4.76	4.74	4.73
	Energy Efficiency (2)	%	175	175	177	177	175	181	186	187	187	186
	Heating capacity (3)	kW	212	253	311	343	379	417	458	497	559	724
Heating STD	Absorbed power (3)	kW	63	75	93	102	112	124	137	148	169	218
versions	COP (3)		3.37	3.37	3.34	3.36	3.38	3.36	3.34	3.36	3.31	3.32
	Heating capacity (3)	kW	213	254	312	344	380	418	459	499	561	726
Heating STD	Absorbed power (3)	kW	65	77	95	104	115	127	140	151	172	223
versions	COP (3)		3.28	3.30	3.28	3.31	3.30	3.29	3.28	3.30	3.26	3.26
(EN14511)	SCOP (4)		3.67	3.57	3.60	3.52	3.61	3.52	3.53	3.48		3.53
	Energy Efficiency (4)	%	144	140	141	138	141	138	138	136	139	138
	Quantity	n°	2+2	2+2	2+2	2+2	2+2	3+3	3+3		3+3	3+3
Compressor	Refrigerant circuits	n°	2	2	2	2	2	2	2	2	2	2
·	Capacity steps	n°				l .	Ster	less				
	Water flow	l/s	9.36	11.18	13.71	15.10	16.67	18.30	20.16	21.88	24.61	31.92
Evaporator	Pressure drops	kPa	38	36	35	37	40	32	33	36	32	37
	Water connections	DN	80	80	80	80	80	150	150	150	150	150
	Power supply	V/Ph/Hz					400/	/3/50				
Electrical	Max. running current	А	137	156	194	211	173	250	202	320	355	460
characteristics	Max. starting current	Α	305	334	407	424	386	428	415	534	617	800
	Pump available static pressure	kPa	160	140	170	185	170	165	145	185	175	145
Unit with pump	Water connections	DN	100	100	100	100	100	150	150	150	150	150
	STD versions (5)	dB(A)	71	73	75	74	74	74	75	75	76	77
	STD versions with SL	dB(A)	68	69	71	71	71	71	72	72	72	74
	accessory (5)											74
Sound pressure	SSL versions (5)	dB(A)	65	66	68	67	68	68	69	_		
200.10 probbaro	MC versions (5)	dB(A)	70	72	74	73	73	73	74	74	75	76
	MC versions with SL accessory (5)	dB(A)	67	68	70	70	70	70	71	71	457 514 145 164 3.15 3.13 4.70 4.68 185 184 458 515 143 161 3.20 3.20 457 514 144 162 3.17 3.17 4.76 4.74 187 187 497 559 148 169 3.36 3.31 499 561 151 172 3.30 3.26 3.48 3.54 136 139 3+3 3+3 2 2 21.88 24.61 36 32 150 150 320 355 534 617 185 175 150 150 75 76 72 73 70 71 74	73
-	MC/SSL versions (5)	dB(A)	64	65	67	66	67	67	68			
Weights	Transport weight	Kg	2251	2384	2511	2791	2851	3186	3248			4392
vvoigiito	Operating weight	Kg	2270	2410	2550	2830	2890	3230	3300	3710	3900	4470

$D\Pi$	MEI	JOI	\bigcirc	ıc
ווע	$VI \subseteq I$	וכע	Ul	VO

MODEL		202	242	302	332	372	402	442	482	542	702	
	STD-MC	mm	4000	4000	4000	5000	5000	5000	5000	6200	6200	7200
L	SSL-MC/SSL	mm	5000	5000	5000	6200	6200	6200	6200	7200	7200	
W	STD-SSL-MC-MC/SSL	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	STD-SSL-MC-MC/SSL	mm	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100

TWA 202÷702 S/IK/P/A 500 | 1800 | 1000 | 1800

- Chilled water from 12 to 7 °C, ambient air temperature 35 °C.
- 2. Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- Hegulation n. 2016/2281.
 Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b.
 Seasonal energy efficiency of heating at low temperature with average climatic conditions. According to EU Regulation n. 813/2013.
 Sound pressure level measured in free field conditions at 1 m from the unit. 3. 4.
- 5. According to ISO 3744.

 N.B. Weights of SSL and WP versions are specified on technical brochure.
- N.B. Data of MC versions are specified on technical brochure.

TWA 212+682 S/K/P/AF

A CLASS ENERGY EFFICIENCY AIRCOOLED LIQUID CHILLERS AND HEAT PUMPS WITH AXIAL FANS, SCROLL COMPRESSORS AND PLATE EXCHANGER.

The TWA 212÷682 S/K/P/AF liquid Chillers and Heat Pumps are characterized by A CLASS energy efficiency. The units are characterized by multi-compressor design on double cooling circuit, to reach high energy performances, reduction of current at start-up, elimination of inertial tanks and excellent silent functioning. The use of components built in large series makes them highly reliable and the management of an high number of compressors allows increased life span with reduction of machine stopping risks and easier maintenance operations. A wide range of accessories, factory fitted or supplied separately, complete the outstanding versatility and functionality of the series. Are available as option the new EC Inverter fans with high available static pressure and efficiency. The Heat Pump versions are designed for hot water production up to 55 °C.

The units are compliant to the ErP Regulation.

On request, units can be supplied with R452B (TWA 212+682 S/G/P/AF) or R454B (TWA 212+682 S/L/P/AF) refrigerant.

FROM 197 KW TO 692 KW.

VERSION

TWA

Cooling only

TWA/WP

Reversible Heat Pump

TWA/SSL

Super silenced cooling only

TWA/WP/SSL

Super silenced reversible Heat Pump

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tubes and aluminium finned coils.
- Evaporator AISI 316 stainless steel braze welded plates type with two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch. On the Heat Pump units it is always installed an antifreeze heater.
- Cooling circuit shut-off valve on liquid line in 302÷682 models.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R410A refrigerant. On request R452B or R454B refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses or magnetothermic switches, thermal protection relays for compressors and thermocontacts for fans.
- Functioning in heating mode with outside air temperature down to -15 °C.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers

SL Unit silencement

RFM Cooling circuit shut-off valve on

discharge line

RFL Cooling circuit shut-off valve on

liquid line

 CT Condensing control down to 0 °C

CC Condensing control down to -20 °C

BT Low water temperature kit

EC EC Inverter fans

EC Inverter fans with high available **ECH**

static pressure

DS Desuperheater

RT Total heat recovery TX

Coil with pre-coated fins EW External water connections PS Single circulating pump

PSI Inverter single circulating pump

PD Double circulating pump

PDI Inverter double circulating pump Antifreeze heater for evaporator

FΕ Antifreeze heater for pipes FΝ

Antifreeze heater for single pump FG

and pipes

FΜ Antifreeze heater for double pump and pipes

SS Soft start

IS Modbus RTU protocol, RS485 serial

Modbus TCP/IP protocol, Ethernet port IST

ISB BACnet MSTP protocol, RS485 serial interface

BACnet TCP/IP protocol, Ethernet port ISBT

ISL LonWorks protocol, FTT-10 serial

ISS SNMP protocol, Ethernet port

IAV Remote set-point, 0-10 V signal IAA Remote set-point, 4-20 mA signal

IAS Remote signal for second set-point activation

IDL Demand limit from digital input

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel

Coils protection metallic guards RP FΡ Coils protection metallic quards

with filter

AG Rubber shock absorbers

ΑM Spring shock absorbers

C E R T I F I E D PERFORMANCE ErP scop

TECHNIC	AL DATA - TWA 212	÷682 S	S/K/P/AF	:					
MODEL			212	222	242	272	302	342	362
	Cooling capacity (1)	kW	197	220	245	271	300	329	361
Cooling	Absorbed power (1)	kW	62	69	76	83	95	105	111
Ü	EER (1)		3.18	3.19	3.22	3.27	3.16	3.13	3.25
	Cooling capacity (1)	kW	196	219	244	270	299	328	360
Caalina	Absorbed power (1)	kW	63	70	77	84	96	105	112
Cooling	EER (1)		3.11	3.13	3.17	3.21	3.11	3.12	3.21
(EN14511)	SEER (2)		4.18	4.19	4.23	4.24	4.20	4.20	4.21
	Energy Efficiency (2)	%	164	165	166	167	165	165	165
	Heating capacity (3)	kW	214	239	266	295	325	359	391
Heating	Absorbed power (3)	kW	65	73	81	88	99	109	119
•	COP (3)		3.29	3.27	3.28	3.35	3.28	3.29	3.29
	Heating capacity (3)	kW	215	240	267	296	327	360	393
Llastina	Absorbed power (3)	kW	67	75	83	90	102	112	122
Heating	COP (3)		3.21	3.20	3.22	3.29	3.21	3.21	3.22
(EN14511)	SCOP (4)		3.35	3.42	3.35	3.34	3.37	3.34	3.35
	Energy Efficiency (4)	%	131	134	131	131	132	131	131
	Quantity	n°	3+3	3+3	3+3	3+3	4+4	4+4	4+4
Compressor	Refrigerant circuits	n°	2	2	2	2	2	2	2
	Capacity steps	n°			6			8	,
	Water flow	l/s	9.41	10.51	11.71	12.95	14.33	15.72	17.25
Evaporator	Pressure drops	kPa	45	49	44	42	50	39	46
	Water connections	DN	80	80	80	80	80	80	80
Electrical	Power supply	V/Ph/Hz				400/3/50			
characteristics	Max. running current	Α	152	166	187	199	224	241	258
Characteristics	Max. starting current	А	276	299	354	367	357	409	426
Unit with pump	Pump available static pressure	kPa	155	135	205	185	180	185	170
Offic With pump	Water connections	DN dB(A)	100	100	100	100	100	100	100
	STD version (5)		72	73	74	74	74	74	74
Sound pressure	With SL accessory (5)	dB(A)	69	70	71	71	71	71	72
	SSL version (5)	dB(A)	66	66	67	68	67	68	68
Weights	Transport weight	Kg	1854	2171	2289	2317	2437	2680	2690
vveigitis	Operating weight	Kg	1870	2190	2310	2340	2460	2710	2720

MODEL			412	442	482	562	622	682
MODEL	10 1: ': (4)	1110						
0 "	Cooling capacity (1)	kW	396	435	485	538	609	692
Cooling	Absorbed power (1)	kW	124	137	154	169	192	220
	EER (1)		3.19	3.18	3.15	3.18	3.17	3.15
	Cooling capacity (1)	kW	394	433	484	536	607	690
Cooling	Absorbed power (1)	kW	126	139	155	171	194	222
(EN14511)	EER (1)		3.13	3.12	3.12	3.13	3.13	3.11
(LIVITOII)	SEER (2)		4.48	4.56	4.59	4.57	4.56	4.60
	Energy Efficiency (2)	%	176	179	181	180	179	181
	Heating capacity (3)	kW	431	473	526	586	663	754
Heating	Absorbed power (3)	kW	129	143	162	176	202	231
	COP (3)		3.34	3.31	3.25	3.33	3.28	3.26
	Heating capacity (3)	kW	433	475	528	588	665	756
Llastina	Absorbed power (3)	kW	133	147	165	181	206	236
Heating (FNI)	COP (3)		3.26	3.23	3.20	3.25	3.23	3.20
(EN14511)	SCOP (4)		3.36	3.32	3.36	3.31	3.33	3.43
	Energy Efficiency (4)	%	131	130	131	129	130	134
	Quantity	n°	5+5	5+5	6+6	6+6	6+6	6+6
Compressor	Refrigerant circuits	n°	2	2	2	2	2	2
	Capacity steps	n°		8		1	10	
	Water flow	l/s	18.92	20.78	23.17	25.70	29.10	33.06
Evaporator	Pressure drops	kPa	49	49	33	41	34	32
	Water connections	DN	80	80	150	150	150	150
Electrical	Power supply	V/Ph/Hz		•	400,	/3/50	•	
	Max. running current	А	274	324	358	391	446	500
characteristics	Max. starting current	А	407	492	525	558	623	678
Liberta contability and communication	Pump available static pressure	kPa	155	125	185	170	160	145
Unit with pump	Water connections	DN	100	100	100	100	150	150
	STD version (5)	dB(A)	76	76	75	76	77	77
Sound pressure	With SL accessory (5)	dB(A)	73	73	72	73	74	74
,	SSL version (5)	dB(A)	69	69	69	70		
\A(: 1 :	Transport weight	Kg	2869	3004	3512	3642	4420	4458
Weights	Operating weight	Kg	2900	3040	3560	3690	4480	4520

DIMENSIONS

MODEL			212	222	242	272	302	342	362	412	442	482	562	622	682
1	STD	mm	4000	4000	4000	4000	5000	5000	5000	5000	5000	6200	6200	7200	7200
L	SSL	mm	5000	5000	5000	5000	6200	6200	6200	6200	6200	7200	7200		
W	STD/SSL	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	STD/SSL	mm	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100

CLEARANCE AREA

TWA 212÷682 S/K/P/AF 500 | 1800 | 1000 | 1800

- Chilled water from 12 to 7 °C, ambient air temperature 35 °C.

 Seasonal energy efficiency of cooling at low temperature. According to EU

 Regulation n. 2016/2281.

 Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b.

 Seasonal energy efficiency of heating at low temperature with average climatic
- conditions. According to EU Regulation n. 813/2013.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of SSL and WP versions are specified on technical brochure.

TWA/WP 212+682 S/K/P/A

A CLASS ENERGY EFFICIENCY AIRCOOLED REVERSIBLE HEAT PUMPS WITH AXIAL FANS, SCROLL COMPRESSORS AND PLATE EXCHANGER.

The TWA/WP 212÷682 S/K/P/A reversible Heat Pumps are characterized by A CLASS energy efficiency. The units are characterized by multi-compressor design on double cooling circuit, to reach high energy performances, reduction of current at start-up, elimination of inertial tanks and excellent silent functioning. The use of components built in large series makes them highly reliable and the management of an high number of compressors allows increased life span with reduction of machine stopping risks and easier maintenance operations. A wide range of accessories, factory fitted or supplied separately, complete the outstanding versatility and functionality of the series. Are available as option the new EC Inverter fans with high available static pressure and efficiency. Units are designed for hot water production up to 55 °C.

The units are compliant to the ErP Regulation.

On request, units can be supplied with R452B (TWA/WP 212+682 S/G/P/A) or R454B (TWA/WP 212÷682 S/L/P/A) refrigerant.

FROM 227 KW TO 762 KW.

VERSION

TWA/WP

Reversible Heat Pump

TWA/WP/SSL

Super silenced reversible Heat Pump

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tubes and aluminium finned coils.
- Evaporator AISI 316 stainless steel braze welded plates type with two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch. On the units it is always installed an antifreeze heater.
- Cooling circuit shut-off valve on liquid line in 302÷682 models.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R410A refrigerant. On request R452B or R454B refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses or magnetothermic switches, thermal protection relays for compressors and thermocontacts for fans.
- Functioning in heating mode with outside air temperature down to -15 °C.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM	Automatic circuit breakers
SL	Unit silencement
DEM	Cooling circuit chut off valv

Cooling circuit shut-off valve on discharge line **RFL** Cooling circuit shut-off valve on

liquid line

 CT Condensing control down to 0 °C CC Condensing control down to -20 °C

BT Low water temperature kit

EC EC Inverter fans

ECH EC Inverter fans with high available static pressure

DS Desuperheater RT Total heat recovery TX Coil with pre-coated fins F\// External water connections PS Single circulating pump

PSI Inverter single circulating pump PD Double circulating pump

PDI Inverter double circulating pump

Antifreeze heater for pipes FΝ FG Antifreeze heater for single pump and pipes

FΜ Antifreeze heater for double pump and pipes

SS Soft start

interface

IS Modbus RTU protocol, RS485 serial

Modbus TCP/IP protocol, Ethernet port IST ISB BACnet MSTP protocol, RS485 serial

BACnet TCP/IP protocol, Ethernet port ISBT

ISL LonWorks protocol, FTT-10 serial

ISS SNMP protocol, Ethernet port IAV Remote set-point, 0-10 V signal

Remote set-point, 4-20 mA signal IAA IAS Remote signal for second set-point

activation

IDL Demand limit from digital input

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel

RP Coils protection metallic guards AG Rubber shock absorbers

Spring shock absorbers AM

TECHNIC	AL DATA -TWA/WP	212÷6	82 S/K/I	P/A					
MODEL			212	222	242	272	302	342	362
	Heating capacity (1)	kW	227	256	272	294	342	369	389
Heating	Absorbed power (1)	kW	66	75	81	85	102	106	112
	COP (1)		3.44	3.41	3.36	3.46	3.35	3.48	3.47
	Heating capacity (1)	kW	228	257	273	295	343	370	390
Harakin a	Absorbed power (1)	kW	68	77	83	87	105	108	115
Heating	COP (1)		3.35	3.34	3.29	3.39	3.27	3.43	3.39
(EN14511)	SCOP (2)		3.40	3.47	3.40	3.39	3.42	3.39	3.40
	Energy Efficiency (2)	%	133	136	133	133	134	133	133
	Cooling capacity (3)	kW	194	217	239	259	294	322	339
Cooling	Absorbed power (3)	kW	68	75	78	85	100	107	113
•	EER (3)		2.85	2.89	3.06	3.05	2.94	3.01	3.00
	Cooling capacity (3)	kW	193	216	238	258	293	321	338
0 "	Absorbed power (3)	kW	69	76	79	86	101	108	114
ooling	EER (3)		2.80	2.84	3.01	3.00	2.90	2.97	2.96
(EN14511)	SEER (4)		4.05	4.06	4.10	4.11	4.07	4.07	4.08
	Energy Efficiency (4)	%	159	159	161	161	160	160	160
	Quantity	n°	3+3	3+3	3+3	3+3	4+4	4+4	4+4
Compressor	Refrigerant circuits	n°	2	2	2	2	2	2	2
•	Capacity steps	n°			6			8	
	Water flow	l/s	9.27	10.37	11.42	12.37	14.05	15.38	16.20
Evaporator	Pressure drops	kPa	44	55	42	38	49	37	41
	Water connections	DN	80	80	80	80	80	80	80
Florence	Power supply	V/Ph/Hz				400/3/50	•	•	
Electrical	Max. running current	Α	152	166	187	199	224	241	258
characteristics	Max. starting current	Α	276	299	354	367	357	409	426
I Inda o dela monera	Pump available static pressure	kPa	155	130	205	190	180	185	175
Unit with pump	Water connections	DN	100	100	100	100	100	100	100
	STD version (5)	dB(A)	72	71	71	72	72	73	74
Sound pressure	With SL accessory (5)	dB(A)	69	68	68	69	69	70	71
	SSL version (5)	dB(A)	65	65	65	66	66	67	67
\A/aimbaa	Transport weight	Kg	1954	2291	2409	2437	2567	2820	2830
Weights	Operating weight	Kg	1970	2310	2430	2460	2590	2850	2860

		, ,		'		'		
MODEL			412	442	482	562	622	682
	Heating capacity (1)	kW	420	476	532	566	677	762
Heating	Absorbed power (1)	kW	125	141	157	169	202	226
-	COP (1)		3.36	3.38	3.39	3.35	3.35	3.37
	Heating capacity (1)	kW	422	478	533	568	679	764
Haatina	Absorbed power (1)	kW	128	144	160	172	206	230
Heating	COP (1)		3.30	3.32	3.33	3.30	3.30	3.32
(EN14511)	SCOP (2)		3.41	3.37	3.41	3.36	3.38	3.48
	Energy Efficiency (2)	%	133	132	133	131	132	136
	Cooling capacity (3)	kW	359	421	475	512	597	671
Cooling	Absorbed power (3)	kW	127	144	162	172	207	241
	EER (3)		2.83	2.92	2.93	2.98	2.88	2.78
	Cooling capacity (3)	kW	358	419	474	510	595	669
0 1:	Absorbed power (3)	kW	128	146	163	174	209	243
Cooling (EN14511)	EER (3)		2.80	2.87	2.91	2.93	2.85	2.75
(EIV14511)	SEER (4)		4.35	4.42	4.45	4.55	4.55	4.55
	Energy Efficiency (4)	%	171	174	175	179	179	179
	Quantity	n°	5+5	5+5	6+6	6+6	6+6	6+6
Compressor	Refrigerant circuits	n°	2	2	2	2	2	2
	Capacity steps	n°		8			10	
	Water flow	l/s	17.15	20.11	22.69	24.46	28.52	32.06
Evaporator	Pressure drops	kPa	46	46	32	37	33	30
	Water connections	DN	80	80	150	150	150	150
Electrical	Power supply	V/Ph/Hz			400,	/3/50		
characteristics	Max. running current	А	274	324	358	391	446	500
Characteristics	Max. starting current	А	407	492	525	558	623	678
Unit with pump	Pump available static pressure	kPa	160	130	185	175	160	145
Onit with pump	Water connections	DN	100	100	100	100	150	150
	STD version (5)	dB(A)	74	76	76	76	76	77
Sound pressure	With SL accessory (5)	dB(A)	71	73	73	73	73	74
	SSL version (5)	dB(A)	67	68	69	70		
Weights	Transport weight	Kg	3019	3164	3702	3832	4660	4698
vveigiits	Operating weight	Kg	3050	3200	3750	3880	4720	4770

DIMENSIONS

MODEL			212	222	242	272	302	342	362	412	442	482	562	622	682
1	STD	mm	2800	4000	4000	4000	4000	5000	5000	5000	5000	6200	6200	7200	7200
L	SSL	mm	4000	4000	5000	5000	5000	5000	5000	5000	6200	6200	7200		
W	STD/SSL	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	STD/SSL	mm	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100

CLEARANCE AREA

TWA/WP 212÷682 S/K/P/A

500 1800 1000 1800

- Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b. Seasonal energy efficiency of heating at low temperature with average climatic conditions. According to EU Regulation n. 813/2013.

 Chilled water from 12 to 7 °C, ambient air temperature 35 °C.

 Seasonal energy efficiency of process cooling at high temperature. According
- to EU Regulation n. 2016/2281.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of SSL version are specified on technical brochure.

TWA 212+1102 S/K/P

AIRCOOLED LIQUID CHILLERS AND HEAT PUMPS WITH AXIAL FANS, SCROLL COMPRESSORS AND PLATE EXCHANGER.

The liquid Chillers and Heat Pumps of the TWA 212÷1102 S/K/P series, with R410A refrigerant, are designed for large-sized service sector or industrial ambients.

The units are characterized by multi-compressor design on double cooling circuit, to reach high energy performances, reduction of current at start-up, elimination of inertial tanks and excellent silent functioning. The use of components built in large series makes them highly reliable and the management of an high number of compressors allows increased life span with reduction of machine stopping risks and easier maintenance operations. A wide range of accessories, factory fitted or supplied separately, complete the outstanding versatility and functionality of the series. Are available as option the new EC Inverter fans with high available static pressure and efficiency.

Cooling only units are compliant to the ErP 2021 Regulation for process cooling application; for comfort cooling application they are compliant if provided with EC or ECH accessory (EC Inverter fans).

Heat pump models 212+412 are compliant to the ErP Regulation; models 442+1102 are compliant if provided with EC or ECH accessory (EC Inverter fans).

On request, units can be supplied with R452B (TWA 212+1102 S/G/P) or R454B (TWA 212+1102 S/L/P) refrigerant.

FROM 199 KW TO 1051 KW.

VERSION

TWA

Cooling only

TWA/WP

Reversible Heat Pump

TWA/SSL

Super silenced cooling only

TWA/WP/SSL

Super silenced reversible Heat Pump

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tubes and aluminium finned coils.
- Evaporator AISI 316 stainless steel braze welded plates type with two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch. On the Heat Pump units it is always installed an antifreeze heater.
- Cooling circuit shut-off valve on liquid line in 302÷1102 models.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R410A refrigerant. On request R452B or R454B refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses or magnetothermic switches, thermal protection relays for compressors and thermocontacts for fans.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers

SI Unit silencement **RFM** Cooling circuit shut-off valve on

discharge line RFL Cooling circuit shut-off valve on

liauid line CT Condensing control down to 0 °C

CC Condensing control down to -20 °C Low water temperature kit BT

EC EC Inverter fans

ECH EC Inverter fans with high available static pressure

DS Desuperheater RT Total heat recovery

TX Coil with pre-coated fins EW External water connections PS Single circulating pump

PSI Inverter single circulating pump

Double circulating pump PD

PDI Inverter double circulating pump

FF Antifreeze heater for evaporator

FΝ Antifreeze heater for pipes

Antifreeze heater for single pump FG and pipes

FΜ Antifreeze heater for double pump and pipes

SS Soft start

IS Modbus RTU protocol, RS485 serial interface

IST Modbus TCP/IP protocol, Ethernet port

ISB BACnet MSTP protocol, RS485 serial interface

ISBT BACnet TCP/IP protocol, Ethernet port **ISL** LonWorks protocol, FTT-10 serial

interface

ISS SNMP protocol, Ethernet port

IAV Remote set-point, 0-10 V signal IAA Remote set-point, 4-20 mA signal

IAS Remote signal for second set-point

activation

IDL Demand limit from digital input

LOOSE ACCESSORIES:

MNHigh and low pressure gauges

CR Remote control panel

RP Coils protection metallic guards FΡ

Coils protection metallic guards

with filter

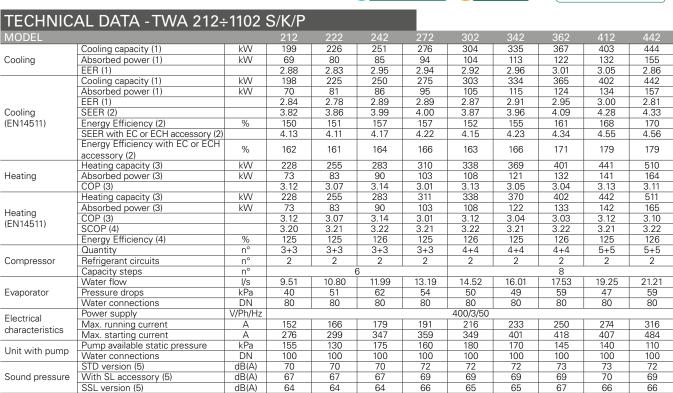
AG Rubber shock absorbers Spring shock absorbers AM

3179

3210

2610

2640



2199 2220 2457

2480

2566

2590

MODEL			482	562	622	682	762	862	962	1102
	Cooling capacity (1)	kW	495	546	602	671	751	845	942	1051
Cooling	Absorbed power (1)	kW	170	184	211	243	275	303	336	365
	EER (1)		2.91	2.97	2.85	2.76	2.73	2.79	2.80	2.88
	Cooling capacity (1)	kW	493	544	599	669	749	842	939	1047
	Absorbed power (1)	kW	172	186	214	246	277	306	339	369
	EER (1)		2.87	2.92	2.81	2.72	2.70	2.75	2.77	2.84
Cooling	SEER (2)		4.30	4.32	4.39	4.32	4.34	4.33	4.34	4.33
(EN14511)	Energy Efficiency (2)	%	169	170	173	170	171	170	171	170
	SEER with EC or ECH accessory (2)		4.55	4.55	4.55	4.56	4.55	4.56	4.55	4.55
	Energy Efficiency with EC or ECH accessory (2)	%	179	179	179	179	179	179	179	179
	Heating capacity (3)	kW	564	620	684	776	861	962	1078	1210
Heating	Absorbed power (3)	kW	182	202	223	249	282	312	349	383
-	COP (3)		3.10	3.07	3.07	3.12	3.05	3.08	3.09	3.16
	Heating capacity (3)	kW	565	621	685	777	862	963	1079	1211
Lleating	Absorbed power (3)	kW	183	203	224	250	283	313	350	384
Heating (EN14511)	COP (3)		3.09	3.07	3.06	3.11	3.05	3.08	3.08	3.15
(EIN14511)	SCOP (4)		3.19	3.19	3.19	3.19	3.19	3.19	3.19	3.19
	Energy Efficiency (4)	%	125	125	125	125	125	125	125	125
	Quantity	n°	6+6	6+6	6+6	6+6	6+6	6+6	6+6	6+6
Compressor	Refrigerant circuits	n°	2	2	2	2	2	2	2	2
	Capacity steps	n°					0			
	Water flow	l/s	23.65	26.09	28.76	32.06	35.88	40.37	45.01	50.21
Evaporator	Pressure drops	kPa	49	60	58	49	41	51	42	52
	Water connections	DN	80	80	80	150	150	150	150	150
Electrical	Power supply	V/Ph/Hz				400,	/3/50			
characteristics	Max. running current	Α	350	375	422	485	545	598	676	746
Characteristics	Max. starting current	Α	518	543	600	662	759	812	938	1007
Unit with pump	Pump available static pressure	kPa	165	145	135	125	165	140	130	100
Offic With pump	Water connections	DN	100	100	150	150	150	150	150	150
	STD version (5)	dB(A)	73	75	76	76	76	76	76	77
Sound pressure	With SL accessory (5)	dB(A)	70	72	73	73	73	73	73	74
	SSL version (5)	dB(A)	67	69	70	70	69	70		
Weights	Transport weight	Kg	3294	3463	3517	3682	4200	4518	4918	5044
vveigiits	Operating weight	Kg	3330	3500	3560	3730	4260	4580	4990	5120

1674

1690

1763

1780

1961

1980

1654

1670

Kg

DIMENSIONS

MODEL			212	222	242	272	302	342	362	412	442	482	562	622	682	762	862	962	1102
1	STD	mm	2800	2800	2800	2800	4000	4000	4000	4000	5000	5000	5000	5000	5000	6200	6200	7200	7200
L	SSL	mm	2800	2800	2800	2800	4000	4000	4000	4000	5000	5000	5000	5000	6200	7200	7200		
W	STD/SSL	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	STD/SSL	mm	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100

CLEARANCE AREA

Transport weight

Operating weight

Weights

TWA 212÷1102 S/K/P

500 1800 1000 1800

- l. Chilled water from 12 to 7 °C, ambient air temperature 35 °C.
- Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- 3. Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b.
- Seasonal energy efficiency of heating at low temperature with average climatic conditions. According to EU Regulation n. 813/2013.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of SSL and WP versions are specified on technical brochure.

TWA/FC 212÷1102 S/K/P

AIRCOOLED LIQUID CHILLERS FREE-COOLING WITH AXIAL FANS, SCROLL COMPRESSORS AND PLATE EXCHANGER.

The liquid Chillers of the TWA/FC 212÷1102 S/K/P series, with R410A refrigerant, provide advanced technology, flexible and reliable, through an intelligent control module which optimizes the operating times and the powers delivered by the Scroll compressors, according to the needs of the systems, both civil and industrial, where the production of chilled water is required in continuous service throughout the year. During the cold months, in FREE-COOLING operating mode, the liquid returning from the system is cooled directly, by way of the forced convection of outside air through the condensing coil, thus reducing the energy required for the Scroll compressors operation that the units are equipped with. A system of 3-way valves, controlled by the electronic microprocessor controller that manages the entire unit, can, depending on outside air temperature, operate in CHILLER, FREE-COOLING or MIXED (CHILLER and FREE-COOLING at the same time) mode. TWA/ FC 212÷1102 S/K/P allows the reduction of inrush currents generated, the elimination of inertial accumulation tanks and an excellent silent functioning, as the fans adjust their speed to the actual load of the system, providing great benefits especially at night.

Are available as option the new EC Inverter fans with high available static pressure and efficiency.

The units are compliant to the ErP 2021 Regulation for process cooling application.

On request, units can be supplied with R452B (TWA/FC 212÷1102 S/G/P) or R454B (TWA/FC 212÷1102 S/L/P) refrigerant.

FROM 208 KW TO 1102 KW.

VERSION

TWA/FC

Cooling only

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tubes and aluminium finned coils combined with FREE-COOLING coils.
- Evaporator AISI 316 stainless steel braze welded plates type with two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valve on liquid line in 302÷1102 models.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R410A refrigerant. On request R452B or R454B refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses or magnetothermic switches. thermal protection relays for compressors and thermocontacts for fans.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, high and low pressure transducers on cooling circuit and an electrical heater on electrical board.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

Automatic circuit breakers IM

SL Unit silencement

RFM Cooling circuit shut-off valve on discharge line

RFL Cooling circuit shut-off valve on liquid line

RT Low water temperature kit

EC EC Inverter fans

ECH EC Inverter fans with high available static pressure

TX Coil with pre-coated fins PS Single circulating pump

PSI Inverter single circulating pump PD Double circulating pump

PDI Inverter double circulating pump

SS Soft start

interface

IS Modbus RTU protocol, RS485 serial

IST Modbus TCP/IP protocol, Ethernet port ISB BACnet MSTP protocol, RS485 serial

ISBT BACnet TCP/IP protocol, Ethernet port

LonWorks protocol, FTT-10 serial ISL interface

ISS SNMP protocol, Ethernet port IAV Remote set-point, 0-10 V signal Remote set-point, 4-20 mA signal IAA

IAS Remote signal for second set-point activation

IDL Demand limit from digital input

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel

RP Coils protection metallic quards

AG Rubber shock absorbers AM Spring shock absorbers

TECHNIC		010.	1100 C								
	AL DATA -TWA/FC	212÷			0.40	070	222	0.40	000	440	1.10
MODEL			212	222	242	272	302	342	362	412	442
	Cooling capacity (1)	kW	208	236	263	290	328	365	401	441	483
Cooling	Absorbed power (1)	kW	76	87	88	98	108	123	132	147	163
	EER (1)		2.74	2.71	2.99	2.96	3.04	2.97	3.04	3.00	2.9
	Cooling capacity (1)	kW	206	234	260	287	325	362	398	438	479
Cooling	Absorbed power (1)	kW	78	89	91	101	111	126	135	150	167
(EN14511)	EER (1)		2.64	2.63	2.86	2.84	2.93	2.87	2.95	2.92	2.8
(LIVI45II)	SEPR (2)		3.80	3.83	3.96	3.99	3.85	3.96	4.07	4.27	4.3
	Energy Efficiency (2)	%	149	150	155	157	151	155	160	168	169
ree-Cooling	Air temperature (3)	°C	-2.0	-2.8	-2.5	-0.2	-2.7	-3.5	-1.0	-2.0	-1.0
cycle	Absorbed power (3)	kW	7.0	7.0	10.5	10.5	14.0	14.0	14.0	14.0	17.5
	Quantity	n°	3+3	3+3	3+3	3+3	4+4	4+4	4+4	5+5	5+5
Compressor	Refrigerant circuits	n°	2	2	2	2	2	2	2	2	2
	Capacity steps	n°			_	4				_	6
	Water flow	I/s	11.02	12.38	13.87	15.31	17.32	19.34	21.21	23.33	25.5
Nater circuit	Pressure drops	kPa	102	126	165	124	112	106	115	100	120
vater circuit	Water connections	DN	100	100	100	100	100	100	100	100	100
	Power supply	V/Ph/Hz	100	100	100	100	400/3/50	100	100	100	100
Electrical	Max. running current	A A	152	166	187	199	232	249	266	282	332
characteristics							_				
	Max. starting current	A	276	299	354 70	367	365	417	433	415	500 85
Jnit with pump	Pump available static pressure	kPa	150	115		100	95	80	105	115	
	Water connections	DN	100	100	100	100	100	100	100	100	100
Sound pressure	STD version (4)	dB(A)	70	70	71	73	73	73	74	75	74
	With SL accessory (4)	dB(A)	68	67	68	70	70	70	71	72	71
Neights	Transport weight	Kg	2175	2185	2360	2435	2990	3020	3220	3510	392
	Operating weight	Kg	2310	2320	2500	2630	3190	3220	3470	3770	425
MODEL			482	562	622	: 68	32	762	862	962	1102
	Cooling capacity (1)	kW	536	590	665	73	88	327	920	1014	1102
Cooling	Absorbed power (1)	kW	179	199	230	26	66 3	305	340	368	412
	EER (1)		2.99	2.96	2.89	2.7	77 2	2.71	2.71	2.76	2.67
	Cooling capacity (1)	kW	532	585	659	73	31	318	911	1004	1102
	Absorbed power (1)	kW	183	204	236	27	73 :	314	349	378	412
Cooling	EER (1)		2.91	2.87	2.79	2.6	58 2	2.61	2.61	2.66	2.67
(EN14511)	SEPR (2)		4.29	4.31	4.39			1.33	4.31	4.34	4.32
	Energy Efficiency (2)	%	169	169	173			170	169	171	170
Free-Cooling	Air temperature (3)	°C	-2.2	-2.7	-3.0			2.5	-0.1	0.1	-0.4
cycle	Absorbed power (3)	kW	17.5	17.5	17.5			24.5	28.0	31.5	31.5
3,010	Quantity	n°	6+6	6+6	6+6			6+6	6+6	6+6	6+6
Compressor	Refrigerant circuits	n°	2	2	2	2		2	2	2	2
Compressor							8	2	2	2	
	Capacity steps	n°	20.00	21.00	05.1	1 00		0.04	40.50	F0 F1	FO 1
	Water flow	l/s	28.28	31.09	35.1			3.64	48.52	53.51	58.13
Nater circuit	Pressure drops	kPa	121	132	148			172	151	162	173
	Water connections	DN	125	125	125	15		150	150	150	150
Electrical	Power supply	V/Ph/Hz					400/3/50				
characteristics	Max. running current	Α	365	391	438			561	622	699	769
	Max. starting current	Α	533	558	615		_	774	835	961	103
Jnit with pump	Pump available static pressure	kPa	110	90	60	16	00	125	125	90	110
omi wini punip	Water connections	DN	125	125	125	15	50	150	150	150	150
Carrad areas	STD version (4)	dB(A)	74	76	78	7	8	79	78	78	79
Sound pressure	With SL accessory (4)	dB(A)	71	74	75	7	5	75	75	75	76
	Transport weight	Ka	/10N	4220	5060) 52	40 5	020	6000	7/10	7520

וח	ΝЛ	\square	ICI	\cap	NIC
וט	IVI		1OI	\cup	NS

Weights

Transport weight

Operating weight

MODEL			212	222	242	272	302	342	362	412	442	482	562	622	682	762	862	962	1102
L	STD	mm	4000	4000	4000	4000	5000	5000	5000	5000	6200	6200	6200	7200	7200	8400	9600	10600	10600
W	STD	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	STD	mm	2360	2360	2360	2360	2360	2360	2360	2360	2360	2360	2360	2360	2360	2360	2360	2360	2360

4220

4560

5060

5460

5240

5650

CLEARANCE AREA

TWA/FC 212÷1102 S/K/P

500 | 1800 | 1000 | 1800

Kg

Kg

4180

4520

NOTES

- Chilled water (with ethylene glycol at 30%) from 15 to 10 °C, ambient air temperature 35 °C.
- Seasonal energy efficiency of process cooling at high temperature. According to EU Regulation n. 2016/2281.

5830

6320

6880

7600

7410

8220

7530

8340

- Ambient air temperature at which the cooling capacity indicated in point (1) is reached.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.

TWA 212+1102 S/K

AIRCOOLED LIQUID CHILLERS AND HEAT PUMPS WITH AXIAL FANS, SCROLL COMPRESSORS AND SHELL AND TUBE EXCHANGER.

The liquid Chillers and Heat Pumps of the TWA 212÷1102 S/K series, with R410A refrigerant, are designed for large-sized service sector or industrial ambients.

The units are characterized by multi-compressor design on double cooling circuit, to reach high energy performances, reduction of current at start-up, elimination of inertial tanks and excellent silent functioning. The use of components built in large series makes them highly reliable and the management of an high number of compressors allows increased life span with reduction of machine stopping risks and easier maintenance operations. A wide range of accessories, factory fitted or supplied separately, complete the outstanding versatility and functionality of the series. Are available as option the new EC Inverter fans with high available static pressure and efficiency.

Cooling only units are compliant to the ErP 2021 Regulation for process cooling application; for comfort cooling application they are compliant if provided with EC or ECH accessory (EC Inverter fans).

Heat pump models 212+412 are compliant to the ErP Regulation; models 442+1102 are compliant if provided with EC or ECH accessory (EC Inverter fans).

On request, units can be supplied with R452B (TWA 212+1102 S/G) or R454B (TWA 212+1102 S/L) refrigerant.

FROM 200 KW TO 1062 KW.

VERSION

TWA

Cooling only

TWA/WP

Reversible Heat Pump

TWA/SSL

Super silenced cooling only

TWA/WP/SSL

Super silenced reversible Heat Pump

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tubes and aluminium finned coils.
- Shell and tube evaporator with two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valve on liquid line in 302÷1102 models.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R410A refrigerant. On request R452B or R454B refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses or magnetothermic switches, thermal protection relays for compressors and thermocontacts for fans.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers

SL Unit silencement

RFM Cooling circuit shut-off valve on discharge line

RFL Cooling circuit shut-off valve on liquid line

СТ Condensing control down to 0 °C CC Condensing control down to -20 °C

ВТ Low water temperature kit

EC EC Inverter fans

ECH EC Inverter fans with high available static pressure

HR Desuperheater

HRT/S Total heat recovery in series HRT/P Total heat recovery in parallel TX Coil with pre-coated fins ΕW External water connections

PU Single circulating pump

PUI Inverter single circulating pump

PD Double circulating pump

PDI Inverter double circulating pump FF Antifreeze heater for evaporator

FΝ Antifreeze heater for pipes

FΖ Antifreeze heater for evaporator, single pump and pipes

FΗ Antifreeze heater for evaporator, double pump and pipes

SS Soft start

IS Modbus RTU protocol, RS485 serial interface

IST Modbus TCP/IP protocol, Ethernet port **ISB** BACnet MSTP protocol, RS485 serial

ISBT BACnet TCP/IP protocol, Ethernet port LonWorks protocol, FTT-10 serial ISI

interface

interface

ISS SNMP protocol, Ethernet port IAV Remote set-point, 0-10 V signal ΙΔΔ Remote set-point, 4-20 mA signal IAS Remote signal for second set-point activation

IDL Demand limit from digital input

LOOSE ACCESSORIES:

MN High and low pressure gauges CR Remote control panel

RP Coils protection metallic guards FΡ Coils protection metallic guards with filter

AG Rubber shock absorbers ΔМ Spring shock absorbers

FL Flow switch

TECHNIC	AL DATA -TWA 212÷	-1102									
MODEL			212	222	242	272	302	342	362	412	442
	Cooling capacity (1)	kW	200	224	248	270	302	328	367	404	445
Cooling	Absorbed power (1)	kW	70	80	86	97	105	115	121	136	158
3	EER (1)		2.86	2.80	2.88	2.78	2.88	2.85	3.03	2.97	2.82
	Cooling capacity (1)	kW	199	223	247	269	301	326	365	403	444
	Absorbed power (1)	kW	71	81	87	98	106	117	123	137	159
	EER (1)		2.80	2.75	2.84	2.74	2.84	2.79	2.97	2.94	2.79
Cooling	SEER (2)		3.82	3.81	3.86	3.96	3.90	4.03	4.13	4.12	4.11
(EN14511)	Energy Efficiency (2)	%	150	149	151	155	153	158	162	162	161
	SEER with EC or ECH accessory (2)		4.13	4.11	4.17	4.22	4.15	4.23	4.34	4.56	4.56
	Energy Efficiency with EC or ECH	%	162	161	164	166	163	166	171	179	179
	accessory (2)	70	102	101	104	100	103	100	171	179	179
	Heating capacity (3)	kW	229	252	280	304	336	362	401	442	512
Heating	Absorbed power (3)	kW	74	83	91	106	109	123	130	145	167
•	COP (3)		3.09	3.04	3.08	2.87	3.08	2.94	3.08	3.05	3.07
	Heating capacity (3)	kW	229	252	280	305	336	363	402	443	513
Heating	Absorbed power (3)	kW	74	83	91	107	109	124	131	146	168
	COP (3)		3.09	3.04	3.08	2.86	3.07	2.93	3.07	3.04	3.06
(EN14511)	SCOP (4)		3.22	3.20	3.21	3.22	3.21	3.22	3.23	3.21	3.20
	Energy Efficiency (4)	%	126	125	125	126	125	126	126	125	125
	Quantity	n°	3+3	3+3	3+3	3+3	4+4	4+4	4+4	5+5	5+5
Compressor	Refrigerant circuits	n°	2	2	2	2	2	2	2	2	2
	Capacity steps	n°		(5				8		
	Water flow	l/s	9.44	10.58	11.71	12.75	14.26	15.49	17.33	19.08	21.01
Evaporator	Pressure drops	kPa	45	42	45	50	48	56	55	45	33
	Water connections	DN	100	100	100	100	100	100	100	125	125
Electrical	Power supply	V/Ph/Hz					400/3/50				
characteristics	Max. running current	Α	152	166	179	191	216	233	250	274	316
characteristics	Max. starting current	Α	276	299	347	359	349	401	418	407	484
Unit with pump	Pump available static pressure	kPa	150	140	195	170	180	165	150	140	135
Offic with pump	Water connections	DN	100	100	100	100	100	100	100	100	100
	STD version (5)	dB(A)	70	70	70	72	72	72	73	73	72
Sound pressure	With SL accessory (5)	dB(A)	67	67	67	69	69	69	69	70	69
	SSL version (5)	dB(A)	64	64	64	66	65	65	67	66	66
Weights	Transport weight	Kg	1703	1723	1813	2003	2253	2532	2642	2691	3283
vveignis	Operating weight	Kg	1750	1770	1860	2050	2310	2600	2710	2780	3380

MODEL			482	562	622	682	762	862	962	1102
	Cooling capacity (1)	kW	510	551	614	684	766	862	961	1062
Cooling	Absorbed power (1)	kW	174	186	214	250	281	307	340	369
	EER (1)		2.93	2.96	2.87	2.74	2.73	2.81	2.83	2.88
	Cooling capacity (1)	kW	508	549	611	682	763	858	958	1058
	Absorbed power (1)	kW	176	188	217	252	284	311	343	373
	EER (1)		2.89	2.92	2.82	2.71	2.69	2.76	2.79	2.84
Cooling	SEER (2)		4.12	4.12	4.12	4.11	4.10	4.11	4.12	4.12
(EN14511)	SEER with EC or ECH accessory (2)	%	162	162	162	161	161	161	162	162
	Energy Efficiency with EC or ECH accessory (2)		4.55	4.55	4.55	4.56	4.55	4.56	4.55	4.55
	Energy Efficiency (2)	%	179	179	179	179	179	179	179	179
	Heating capacity (3)	kW	581	626	698	791	878	981	1100	1222
Heating	Absorbed power (3)	kW	186	204	226	257	288	316	353	388
Ü	COP (3)		3.12	3.07	3.09	3.08	3.05	3.10	3.12	3.15
	Heating capacity (3)	kW	582	627	699	792	879	982	1101	1223
Heating	Absorbed power (3)	kW	187	205	227	258	289	317	354	389
Heating	COP (3)		3.12	3.06	3.08	3.07	3.04	3.10	3.11	3.14
(EN14511)	SCOP (4)		3.19	3.19	3.19	3.19	3.19	3.19	3.19	3.19
	Energy Efficiency (4)	%	125	125	125	125	125	125	125	125
	Quantity	n°	6+6	6+6	6+6	6+6	6+6	6+6	6+6	6+6
Compressor	Refrigerant circuits	n°	2	2	2	2	2	2	2	2
	Capacity steps	n°				1	0			
	Water flow	l/s	24.08	26.02	28.99	32.30	36.17	40.71	45.38	50.15
Evaporator	Pressure drops	kPa	43	54	59	46	55	62	47	52
	Water connections	DN	125	125	125	150	150	150	150	150
Electrical	Power supply	V/Ph/Hz				400/	3/50			
	Max. running current	Α	350	375	422	485	545	598	676	746
characteristics	Max. starting current	Α	518	543	600	662	759	812	938	1007
Unit with pump	Pump available static pressure	kPa	165	150	130	130	150	125	125	95
Unit with pump	Water connections	DN	100	100	150	150	150	150	150	150
	STD version (5)	dB(A)	73	75	76	76	76	76	76	77
Sound pressure	With SL accessory (5)	dB(A)	70	72	73	73	73	73	73	74
•	SSL version (5)	dB(A)	67	69	70	70	69	70		
\A/aialata	Transport weight	Kg	3383	3565	3605	3840	4385	4705	5210	5330
Weights	Operating weight	Kg	3480	3670	3720	3970	4540	4860	5470	5590

DIMENSIONS

				l .															
MODEL			212	222	242	272	302	342	362	412	442	482	562	622	682	762	862	962	1102
1	STD	mm	2800	2800	2800	2800	4000	4000	4000	4000	5000	5000	5000	5000	5000	6200	6200	7200	7200
L	SSL	mm	2800	2800	2800	2800	4000	4000	4000	4000	5000	5000	5000	5000	6200	7200	7200		
W	STD/SSL	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	STD/SSL	mm	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100

CLEARANCE AREA

TWA 212÷1102 S/K

500 | 1800 | 1000 | 1800

- Chilled water from 12 to 7 °C, ambient air temperature 35 °C.
- Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- 3. 4.
- Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b. Seasonal energy efficiency of heating at low temperature with average climatic conditions. According to EU Regulation n. 813/2013.

 Sound pressure level measured in free field conditions at 1 m from the unit.
- According to ISO 3744.
- N.B. Weights of SSL and WP versions are specified on technical brochure.

TWA 202÷1352 VV/H/A

A CLASS ENERGY EFFICIENCY AIRCOOLED LIQUID CHILLERS WITH AXIAL FANS, (INVERTER) SCREW COMPRESSORS AND SHELL AND TUBE EXCHANGER.

The TWA 202÷1352 VV/H/A units in A CLASS energy efficiency, with HFO-R1234ze refrigerant, are designed to provide an effective solution to highly selective system needs. The latest generation refrigerant HFO-R1234ze, with GWP<1 (Global Warming Potential), is the most environmentally sustainable refrigerant on the market, and meets the strictest international environmental regulations. The innovative heat exchangers, traditional or Microchannel, the Screw compressors and the new design optimized in every detail ensure the reach of the highest efficiency. Furthermore, accessories as the Inverter control on one or both Screw compressors, fans and on circulating pumps (EC Inverter) are also available for getting the highest efficiency at part load. The super silenced versions, obtained through acoustic insulation on compressors and on whole structure and wider exchangers, are particularly suitable for installations where extremely quiet operation are essential for the ideal execution of the system.

Are available as option the new EC Inverter fans with high available static pressure and efficiency.

The models 202+362 are compliant to the ErP 2021 Regulation for process cooling application; the models 412+1352 are compliant with EC or ECH accessory (EC Inverter fans). The units are compliant to the ErP 2021 Regulation for comfort cooling application with EC or ECH accessory (EC Inverter fans).

idroinverter

FROM 197 KW TO 1353 KW.

VERSION

TWA

Cooling only

TWA/MC

Cooling only with MICROCHANNEL condensing coils

TWA/SSL

Super silenced cooling only

TWA/MC/SSL

Super silenced cooling only with MICROCHANNEL condensing coils

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Screw compressors with built-in oil separator, suction filter, crankcase heater, oil sight glass, thermal protection and stepless capacity steps.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tube and aluminum finned coils or aluminium MICROCHANNEL coils.
- Shell and tube evaporator with two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- HFO-R1234ze refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors and thermocontacts for fans.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to 0 °C. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation and high and low pressure transducers on cooling circuit.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers SL Unit silencement

CC Condensing control down to -20 °C

BT Low water temperature kit

EC EC Inverter fans

ECH EC Inverter fans with high available static pressure

HR Desuperheater HRT/S Total heat recovery in series

HRT/P Total heat recovery in parallel Coil with pre-coated fins TX TXR Coil with epoxy treatment

SP

ΡU Single circulating pump PUI PD

SPU Inertial tank and single circulating

SPUI

EW External water connections Inertial tank Inverter single circulating pump Double circulating pump Inverter double circulating pump PDI Inertial tank and Inverter single circulating pump 96

SPD Inertial tank and double circulating pump **SPDI** Inertial tank and Inverter double circulating pump

FE Antifreeze heater for evaporator FX

Antifreeze heater for evaporator and

FB Antifreeze heater for evaporator/tank FQ Antifreeze heater on evaporator/tank and pipes

Antifreeze heater for evaporator, F7 single pump and pipes

FΗ Antifreeze heater for evaporator, double pump and pipes

FU Antifreeze heater for evaporator/tank, single pump and pipes

FD Antifreeze heater for evaporator/tank, double pump and pipes

Ш Inverter on one compressor and soft start ID Inverter on all compressors

SS Soft start WM

Web Monitoring - Wireless remote monitoring (GPRS/EDGE/3G/TCP-IP) Modbus RTU protocol, RS485 serial

IS interface

IST	Modbus TCP/IP protocol, Ethernet port
ISB	BACnet MSTP protocol, RS485 serial
	interface

ISBT BACnet TCP/IP protocol, Ethernet port ISL LonWorks protocol, FTT-10 serial

interface ISS SNMP protocol, Ethernet port IAV Remote set-point, 0-10 V signal IAA Remote set-point, 4-20 mA signal IAS Remote signal for second set-point

activation IDI Demand limit from digital input

CP Potential free contacts

LOOSE ACCESSORIES:

High and low pressure gauges MN CR Remote control panel RP Coils protection metallic guards FΡ Coils protection metallic guards with filter Rubber shock absorbers AG ΑM Spring shock absorbers FL Flow switch

/IODEL			202	262	312	362	412	472	552
Cooling STD	Cooling capacity (1)	kW	197	261	309	366	406	464	548
ersion	Absorbed power (1)	kW	63	83	98	116	129	147	168
2151011	EER (1)		3.13	3.14	3.15	3.16	3.15	3.16	3.2
	Cooling capacity (1)	kW	197	260	308	365	405	463	547
	Absorbed power (1)	kW	63	84	99	117	130	149	169
ooling STD	EER (1)		3.13	3.10	3.11	3.12	3.12	3.11	3.2
ersion (EN14511)	SEER (2)	0,	3.81	3.84	3.94	3.89	4.09	4.03	4.1
2131011 (LIVI-011)	Energy Efficiency (2)	%	149	151	155	153	161	158	161
	SEER with EC or ECH accessory (2)		4.17	4.20	4.39	4.26	4.55	4.55	4.5
	Energy Efficiency with EC or ECH accessory (2)	%	164	165	173	167	179	179	180
ooling MC	Cooling capacity (1)	kW	197	261	309	366	406	464	548
ersion	Absorbed power (1)	kW	62	81	96	114	126	144	165
7/3/0/1	EER (1)		3.18	3.22	3.22	3.21	3.22	3.22	3.3
	Cooling capacity (1)	kW	197	260	308	365	405	463	547
	Absorbed power (1)	kW	62	82	97	115	127	146	166
ooling MC	EER (1)		3.18	3.17	3.18	3.17	3.19	3.17	3.3
ersion (EN14511)	SEER (2)	0/	3.85	3.88	3.95	3.93	4.1	4.04	4.1
101011 (21111011)	Energy Efficiency (2)	%	151	152	155	154	161	159	162
	SEER with EC or ECH accessory (2)		4.22	4.25	4.43	4.30	4.55	4.55	4.6
	Energy Efficiency with EC or ECH accessory (2)	%	166	167	174	169	179	179	18
	Quantity	n°	2	2	2	2	2	2	2
mpressor	Refrigerant circuits	n°	2	2	2	2	2	2	2
	Capacity steps	n°		40.4=	4	Stepless	40.1-	00.1=	
	Water flow	l/s	9.41	12.47	14.76	17.49	19.40	22.17	26.1
aporator //	Pressure drops	kPa	39	37	32	34	31	28	37
	Water connections	DN	125	125	150	150	150	150	15
ectrical	Power supply	V/Ph/Hz				400/3/50		1	
aracteristics	Max. running current	Α	203	275	319	355	413	467	51
aracteristics	Max. starting current	Α	291	417	488	586	642	723	78
nit with tank	Pump available static pressure	kPa	155	185	180	155	140	180	160
d pump	Tank water volume	1	2000	2000	2000	2000	2000	2000	200
и риптр	Water connections	DN	100	100	100	100	125	125	15
	STD version (3)	dB(A)	75	76	76	77	77	78	78
und pressure	With SL accessory (3)	dB(A)	72	73	73	74	74	75	75
	SSL version (3)	dB(A)	67	68	68	69	69	70	70
eights	Transport weight (4)	Kg	2700	3215	3540	4015	4120	4625	516
oigitto	Operating weight (4)	Kg	2790	3300	3670	4180	4280	4820	543
IODEL			612	722	812	982	1062	1232	135
ooling STD	Cooling capacity (1)	kW	608	717	809	980	1064	1228	135
ersion	Absorbed power (1)	kW	189	223	249	300	333	379	42:
151011	EER (1)		3.22	3.22	3.25	3.27	3.20	3.24	3.2
	Cooling capacity (1)	kW	606	714	806	978	1061	1224	134
	Absorbed power (1)	kW	191	225	251	302	336	383	42
			3.17	3.17	3.21	3.24	3.16	3.20	3.1
ooling STD	EER (1)				1 10	4.15	4.13	4.16	4.1
-	SEER (2)		4.15	4.16	4.13				
	SEER (2) Energy Efficiency (2)	%	163	163	162	163	162	163	16
	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2)		163 4.56	163 4.57	162 4.57	163 4.58	162 4.55	163 4.55	16 4.5
	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2)	%	163 4.56 179	163 4.57 180	162 4.57 180	163 4.58 180	162 4.55 179	163 4.55 179	16- 4.5 17:
rsion (EN14511)	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1)	% kW	163 4.56 179 608	163 4.57 180 717	162 4.57 180 809	163 4.58 180 980	162 4.55 179 1064	163 4.55 179 1228	16 4.5 17 135
rsion (EN14511)	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1)	%	163 4.56 179 608 185	163 4.57 180 717 219	162 4.57 180 809 244	163 4.58 180 980 294	162 4.55 179 1064 326	163 4.55 179 1228 371	16 4.5 17 135 41
rsion (EN14511)	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1)	% kW kW	163 4.56 179 608 185 3.29	163 4.57 180 717 219 3.27	162 4.57 180 809 244 3.32	163 4.58 180 980 294 3.33	162 4.55 179 1064 326 3.26	163 4.55 179 1228 371 3.31	16 4.5 17 135 41 3.2
rsion (EN14511)	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1)	% kW kW	163 4.56 179 608 185 3.29 606	163 4.57 180 717 219 3.27 714	162 4.57 180 809 244 3.32 806	163 4.58 180 980 294 3.33 978	162 4.55 179 1064 326 3.26 1061	163 4.55 179 1228 371 3.31 1224	16 4.5 17 135 41 3.2 134
rsion (EN14511)	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1)	% kW kW	163 4.56 179 608 185 3.29 606 187	163 4.57 180 717 219 3.27 714 221	162 4.57 180 809 244 3.32 806 246	163 4.58 180 980 294 3.33 978 296	162 4.55 179 1064 326 3.26 1061 329	163 4.55 179 1228 371 3.31 1224 375	16 4.5 17 135 41 3.2 134 41
poling MC rsion	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) EER (1)	% kW kW	163 4.56 179 608 185 3.29 606 187 3.24	163 4.57 180 717 219 3.27 714 221 3.23	162 4.57 180 809 244 3.32 806 246 3.28	163 4.58 180 980 294 3.33 978 296 3.30	162 4.55 179 1064 326 3.26 1061 329 3.22	163 4.55 179 1228 371 3.31 1224 375 3.26	16 4.5 17 135 41 3.2 134 41 3.2
poling MC rision (EN14511)	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1)	% kW kW kW	163 4.56 179 608 185 3.29 606 187	163 4.57 180 717 219 3.27 714 221 3.23 4.17	162 4.57 180 809 244 3.32 806 246 3.28 4.14	163 4.58 180 980 294 3.33 978 296	162 4.55 179 1064 326 3.26 1061 329	163 4.55 179 1228 371 3.31 1224 375	16 4.5 17 135 41 3.2 134 41 3.2
poling MC rision	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2)	% kW kW	163 4.56 179 608 185 3.29 606 187 3.24 4.16	163 4.57 180 717 219 3.27 714 221 3.23 4.17	162 4.57 180 809 244 3.32 806 246 3.28 4.14	163 4.58 180 980 294 3.33 978 296 3.30 4.16	162 4.55 179 1064 326 3.26 1061 329 3.22 4.13	163 4.55 179 1228 371 3.31 1224 375 3.26 4.18	16 4.5 17 135 41 3.2 134 41 3.2 4.1
poling MC rision	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2)	% kW kW kW kW	163 4.56 179 608 185 3.29 606 187 3.24 4.16 163 4.60	163 4.57 180 717 219 3.27 714 221 3.23 4.17 164 4.61	162 4.57 180 809 244 3.32 806 246 3.28 4.14 163 4.61	163 4.58 180 980 294 3.33 978 296 3.30 4.16 163 4.62	162 4.55 179 1064 326 3.26 1061 329 3.22 4.13 162 4.55	163 4.55 179 1228 371 3.31 1224 375 3.26 4.18 164 4.55	16 4.5 17 135 41 3.2 134 41 3.2 4.1 16 4.5
poling MC rision (EN14511)	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2)	% kW kW kW kW	163 4.56 179 608 185 3.29 606 187 3.24 4.16	163 4.57 180 717 219 3.27 714 221 3.23 4.17	162 4.57 180 809 244 3.32 806 246 3.28 4.14	163 4.58 180 980 294 3.33 978 296 3.30 4.16	162 4.55 179 1064 326 3.26 1061 329 3.22 4.13 162 4.55 179	163 4.55 179 1228 371 3.31 1224 375 3.26 4.18	16 4.5 17 135 41 3.2 134 41 3.2 4.1 16 4.5
poling MC rsion poling MC rsion poling MC rsion (EN14511)	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Countity	% kW kW kW %	163 4.56 179 608 185 3.29 606 187 3.24 4.16 163 4.60 181	163 4.57 180 717 219 3.27 714 221 3.23 4.17 164 4.61 181	162 4.57 180 809 244 3.32 806 246 3.28 4.14 163 4.61 181	163 4.58 180 980 294 3.33 978 296 3.30 4.16 163 4.62 182 2	162 4.55 179 1064 326 3.26 1061 329 3.22 4.13 162 4.55 179 2	163 4.55 179 1228 371 3.31 1224 375 3.26 4.18 164 4.55 179	16 4.5 17 135 41 3.2 134 41 3.2 4.1 16 4.5 17
poling MC rsion poling MC rsion poling MC rsion (EN14511)	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2)	% kW kW kW www. www. www. www. www. www.	163 4.56 179 608 185 3.29 606 187 3.24 4.16 163 4.60 181	163 4.57 180 717 219 3.27 714 221 3.23 4.17 164 4.61 181	162 4.57 180 809 244 3.32 806 246 3.28 4.14 163 4.61	163 4.58 180 980 294 3.33 978 296 3.30 4.16 163 4.62 182 2	162 4.55 179 1064 326 3.26 1061 329 3.22 4.13 162 4.55 179	163 4.55 179 1228 371 3.31 1224 375 3.26 4.18 164 4.55 179	16. 4.5 17: 135 41: 3.2 134 41: 3.2 4.1 16. 4.5 17: 2
poling MC rsion poling MC rsion poling MC rsion (EN14511)	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Quantity Refrigerant circuits Capacity steps	% kW kW kW %	163 4.56 179 608 185 3.29 606 187 3.24 4.16 163 4.60 181 2	163 4.57 180 717 219 3.27 7.14 221 3.23 4.17 164 4.61 181 2	162 4.57 180 809 244 3.32 806 246 3.28 4.14 163 4.61 181 2	163 4.58 180 980 294 3.33 978 296 3.30 4.16 163 4.62 182 2 2 Stepless	162 4.55 179 1064 326 3.26 1061 329 3.22 4.13 162 4.55 179 2	163 4.55 179 1228 371 3.31 1224 375 3.26 4.18 4.55 179 2	16- 4.5 179 135 41- 3.2 134 411 3.2 4.1 16- 4.5 179 2
oling MC rsion (EN14511) oling MC rsion oling MC rsion (EN14511)	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Quantity Refrigerant circuits Capacity steps Water flow	% kW kW kW % n° n° n° n° l's	163 4.56 179 608 185 3.29 606 187 3.24 4.16 163 4.60 181 2	163 4.57 180 717 219 3.27 714 221 3.23 4.17 164 4.61 181 2	162 4.57 180 809 244 3.32 806 246 3.28 4.14 163 4.61 181 2	163 4.58 980 980 294 3.33 978 296 3.30 4.16 163 4.62 182 2 Stepless 46.82	162 4.55 179 1064 326 3.26 1061 329 3.22 4.13 162 4.55 179 2	163 4.55 179 1228 371 3.31 1224 375 3.26 4.18 164 4.55 179 2	16 4.5 177 138 41 3.2 134 41 16 4.5 17 2
oling MC rsion (EN14511) oling MC rsion oling MC rsion (EN14511)	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops	% kW kW kW % % n° n° n° kPa	163 4.56 179 608 185 3.29 606 187 3.24 4.16 163 4.60 181 2 2	163 4.57 180 717 219 3.27 714 221 3.23 4.17 164 4.61 181 2 2	162 4.57 180 809 244 3.32 806 246 3.28 4.14 163 4.61 181 2	163 4.58 180 980 294 3.33 978 296 3.30 4.16 163 4.62 182 2 Stepless 46.82 30	162 4.55 179 1064 326 3.26 1061 329 3.22 4.13 162 4.55 179 2 2	163 4.55 179 1228 371 3.31 1224 375 3.26 4.18 164 4.55 179 2 2	16 4.5 177 138 41 3.2 41 3.2 4.1 16 4.5 17 2 2
ooling MC rsion (EN14511) ooling MC rsion (EN14511) ompressor	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Ouantity Refrigerant circuits Capacity steps Water flow Water connections	% kW kW kW % % % n° n° l/s kPa DN	163 4.56 179 608 185 3.29 606 187 3.24 4.16 163 4.60 181 2	163 4.57 180 717 219 3.27 714 221 3.23 4.17 164 4.61 181 2	162 4.57 180 809 244 3.32 806 246 3.28 4.14 163 4.61 181 2	163 4.58 180 980 294 3.33 978 296 3.30 4.16 163 4.62 182 2 Stepless 46.82 46.82 30 200	162 4.55 179 1064 326 3.26 1061 329 3.22 4.13 162 4.55 179 2	163 4.55 179 1228 371 3.31 1224 375 3.26 4.18 164 4.55 179 2	16. 4.5 177 138 411 3.2 134 4.1 166 4.5 177 2 64.6 64.6 54
poling MC rsion (EN14511) poling MC rsion poling MC rsion (EN14511) pompressor aporator	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops	% kW kW kW % % n° n° n° kPa	163 4.56 179 608 185 3.29 606 187 3.24 4.16 163 4.60 181 2 2	163 4.57 180 717 219 3.27 714 221 3.23 4.17 164 4.61 181 2 2	162 4.57 180 809 244 3.32 806 246 3.28 4.14 163 4.61 181 2	163 4.58 180 980 294 3.33 978 296 3.30 4.16 163 4.62 182 2 Stepless 46.82 30	162 4.55 179 1064 326 3.26 1061 329 3.22 4.13 162 4.55 179 2 2	163 4.55 179 1228 371 3.31 1224 375 3.26 4.18 164 4.55 179 2 2	16 4.5 177 135 41. 3.2 134 4.1 16 4.5 177 2 2 64.6
pooling MC rision (EN14511) pooling MC rision (EN14511) pompressor paporator pectrical	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Power supply Max. running current	% kW kW kW % % % n° n° l/s kPa DN	163 4.56 179 608 185 3.29 606 187 3.24 4.16 163 4.60 181 2 2 29.05 33 150	163 4.57 180 717 219 3.27 714 221 3.23 4.17 164 4.61 181 2 2 34.26 40 200	162 4.57 180 809 244 3.32 806 246 3.28 4.14 163 4.61 181 2 2	163 4.58 180 980 294 3.33 978 296 3.30 4.16 163 4.62 182 2 Stepless 46.82 30 200 400/3/50 764	162 4.55 179 1064 326 3.26 1061 329 3.22 4.13 162 4.55 179 2 2 50.84 38 200	163 4.55 179 1228 371 3.31 1224 375 3.26 4.18 164 4.55 179 2 2	16: 4.5 17: 13:5 41: 3.2 13:4 41: 3.2 4.1 16: 4.5 17: 2 2 64.6 54 25:
pooling MC rision (EN14511) pooling MC rision (EN14511) pompressor paporator pectrical	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Power supply	% kW kW kW % % n° n° l/s kPa DN V/Ph/Hz	163 4.56 179 608 185 3.29 606 187 3.24 4.16 163 4.60 181 2 2 29.05 33 150	163 4.57 180 717 219 3.27 714 221 3.23 4.17 164 4.61 181 2 2 34.26 40 200	162 4.57 180 809 244 3.32 806 246 3.28 4.14 163 4.61 181 2 2 38.65 42 200	163 4.58 4.58 980 294 3.33 978 296 3.30 4.16 163 4.62 182 2 Stepless 46.82 30 200 400/3/50	162 4.55 179 1064 326 3.26 1061 329 3.22 4.13 162 4.55 179 2 2 50.84 38 200	163 4.55 179 1228 371 3.31 1224 375 3.26 4.18 4.55 179 2 2 58.67 47 250	16. 4.5 17: 13: 41: 3.2 13: 41: 16. 4.5 17: 2 64.6 54 25
poling MC resion (EN14511) poling MC resion (EN14511) pompressor aporator actrical aracteristics	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Power supply Max. running current	% kW kW kW % n° n° n° LS kPa DN V/Ph/Hz A	163 4.56 179 608 185 3.29 606 187 3.24 4.16 163 4.60 181 2 2 29.05 33 150	163 4.57 180 717 219 3.27 714 221 3.23 4.17 164 4.61 181 2 2 34.26 40 200	162 4.57 180 809 244 3.32 806 246 3.28 4.14 163 4.61 181 2 2 38.65 42 200	163 4.58 180 980 294 3.33 978 296 3.30 4.16 163 4.62 182 2 Stepless 46.82 30 200 400/3/50 764	162 4.55 179 1064 326 3.26 1061 329 3.22 4.13 162 4.55 179 2 2 50.84 38 200	163 4.55 179 1228 371 3.31 1224 375 3.26 4.18 164 4.55 179 2 2	16 4.5 177 138 41 3.2 134 4.1 16 4.5 177 2 2 64.1 54 25
poling MC resion (EN14511) poling MC resion (EN14511) pompressor aporator aporator actrical aracteristics bit with tank	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Power supply Max. running current Max. starting current	% kW kW kW % % n° n° lys kPa DN V/Ph/Hz A A kPa I	163 4.56 179 608 185 3.29 606 187 3.24 4.16 163 4.60 181 2 2 29.05 33 150	163 4.57 180 717 219 3.27 714 221 3.23 4.17 164 4.61 181 2 2 34.26 40 200	162 4.57 180 809 244 3.32 806 246 3.28 4.14 163 4.61 181 2 2 38.65 42 200	163 4.58 180 980 294 3.33 978 296 3.30 4.16 163 4.62 182 2 Stepless 46.82 30 200 400/3/50 764 1206	162 4.55 179 1064 326 3.26 1061 329 3.22 4.13 162 4.55 179 2 2 50.84 38 200	163 4.55 179 1228 371 3.31 1224 375 3.26 4.18 164 4.55 179 2 2 58.67 47 250	16 4.5 177 138 41 3.2 134 4.1 16 4.5 177 2 2 2 64.1 54 25 103
pooling MC resion (EN14511) pooling MC resion (EN14511) pompressor reported aracteristics nit with tank	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cuantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Power supply Max. running current Max. starting current Pump available static pressure Tank water volume	% kW kW kW % % n° n° l's kPa DN V/Ph/Hz A	163 4.56 179 608 185 3.29 606 187 3.24 4.16 163 4.60 181 2 2 29.05 33 150	163 4.57 180 717 219 3.27 714 221 3.23 4.17 164 4.61 181 2 2 34.26 40 200	162 4.57 180 809 244 3.32 806 246 3.28 4.14 163 4.61 181 2 2 38.65 42 200	163 4.58 180 980 294 3.33 978 296 3.30 4.16 163 4.62 182 2 Stepless 46.82 30 200 400/3/50 764 1206	162 4.55 179 1064 326 3.26 1061 329 3.22 4.13 162 4.55 179 2 2 50.84 38 200	163 4.55 179 1228 371 3.31 1224 375 3.26 4.18 164 4.55 179 2 2 58.67 47 250 951 1450 180	16. 4.5 177 138 41. 3.2 4.1 3.2 4.1 3.2 4.1 5.2 6.4.6 103 14.5 103 14.5 15.5
pooling MC pooling poolin	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Power supply Max. running current Max. starting current Pump available static pressure Tank water volume Water connections	% kW kW kW % % n° n° n° Lys kPa DN V/Ph/Hz A kPa I DN	163 4.56 179 608 185 3.29 606 187 3.24 4.16 163 4.60 181 2 2 29.05 33 150 597 896 145 3000 150	163 4.57 180 717 219 3.27 714 221 3.23 4.17 164 4.61 181 2 2 34.26 40 200 670 947 160 3000 150	162 4.57 180 809 244 3.32 806 246 3.28 4.14 163 4.61 181 2 2 2 38.65 42 200 731 1091 140 3000 150	163 4.58 4.58 980 294 3.33 978 296 3.30 4.16 163 4.62 182 2 Stepless 46.82 30 200 400/3/50 764 1206	162 4.55 179 1064 326 3.26 3.26 1061 329 3.22 4.13 162 4.55 179 2 2 50.84 38 200	163 4.55 179 1228 371 3.31 1224 375 3.26 4.18 164 4.55 179 2 2 58.67 47 250 951 1450 180	164.5 4.5 41.1 3.2 41.1 3.2 41.1 3.2 4.1 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
pooling MC persion (EN14511) pooling MC persion (EN14511) pompressor persion (EN14511)	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Power supply Max. running current Max. starting current Pump available static pressure Tank water volume Water connections STD version (3)	% kW kW kW % % % n° n° l/s kPa DN V/Ph/Hz A kPa I DN dB(A)	163 4.56 179 608 185 3.29 606 187 3.24 4.16 163 4.60 181 2 2 29.05 33 150 597 896 145 3000	163 4.57 180 717 219 3.27 714 221 3.23 4.17 164 4.61 181 2 2 34.26 40 200 670 947 947 160 3000	162 4.57 180 809 244 3.32 806 246 3.28 4.14 163 4.61 181 2 2 2 38.65 42 200	163 4.58 180 980 294 3.33 978 296 3.30 4.16 163 4.62 182 2 Stepless 46.82 30 200 400/3/50 764 1206	162 4.55 179 1064 326 3.26 1061 329 3.22 4.13 162 4.55 179 2 2 2 50.84 38 200	163 4.55 179 1228 371 3.31 1224 375 3.26 4.18 164 4.55 179 2 2 58.67 47 250 951 1450 180	16-4.5 177 138 41-1 3.22 4.11 16-4.5 177 2 2 64.6 544 255 1033 149 155 - 844
pooling STD pooling MC prision pooling MC prision pooling MC prision pooling MC prision (EN14511) pompressor pompressor paporator petrical paracteristics paracteristi	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Countity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Power supply Max. running current Max. starting current Pump available static pressure Tank water volume Water connections STD version (3) With SL accessory (3)	% kW kW kW % % n° n° n° l/s kPa DN V/Ph/Hz A A A A B DN dB(A) dB(A)	163 4.56 179 608 185 3.29 606 187 3.24 4.16 163 4.60 181 2 2 29.05 33 150 597 896 145 3000 150 78	163 4.57 4.57 219 3.27 714 221 3.23 4.17 164 4.61 181 2 2 34.26 40 200 670 947 160 3000 150 80 77	162 4.57 4.57 180 809 244 3.32 806 246 3.28 4.14 163 4.61 181 2 2 38.65 42 200 731 1091 140 3000 150 81 78	163 4.58 4.58 980 294 3.33 978 296 3.30 4.16 163 4.62 182 2 Stepless 46.82 30 200 400/3/50 764 1206 120 82 79	162 4.55 179 1064 326 3.26 1061 329 3.22 4.13 162 4.55 179 2 2 50.84 38 200	163 4.55 179 1228 371 3.31 1224 375 3.26 4.18 164 4.55 179 2 2 58.67 47 250 951 1450 180 84 81	16- 4.5 177 135 414 3.2 4.1 3.2 4.1 16- 64.6 54 25 103 149
pooling MC resion (EN14511) pooling MC resion (EN14511) pompressor raporator rectrical aracteristics nit with tank d pump	SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with EC or ECH accessory (2) Energy Efficiency with EC or ECH accessory (2) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Power supply Max. running current Max. starting current Pump available static pressure Tank water volume Water connections STD version (3)	% kW kW kW % % % n° n° l/s kPa DN V/Ph/Hz A kPa I DN dB(A)	163 4.56 179 608 185 3.29 606 187 3.24 4.16 163 4.60 181 2 2 29.05 33 150 597 896 145 3000 150 78	163 4.57 180 717 219 3.27 714 221 3.23 4.17 164 4.61 181 2 2 34.26 40 200 670 947 160 3000 150 80	162 4.57 180 809 244 3.32 806 246 3.28 4.14 163 4.61 181 2 2 38.65 42 200 731 1091 140 3000 150 81	163 4.58 180 980 294 3.33 978 296 3.30 4.16 163 4.62 182 2 Stepless 46.82 30 200 400/3/50 764 1206 120 82	162 4.55 179 1064 326 3.26 1061 329 3.22 4.13 162 4.55 179 2 2 50.84 38 200	163 4.55 179 1228 371 3.31 1224 375 3.26 4.18 164 4.55 179 2 2 58.67 47 250 951 1450 180 84	16-4.5 177 135 41.1 3.2 134 41: 3.22 4.1 16-4.5 177 2 64.6 103 145 1-5 1-6 103 145 1-6 103 145 1-7 103 145 145 15 15 15 15 15 15 15 15 15 15 15 15 15

DIMENSIONS

MOD	EL		202	262	312	362	412	472	552	612	722	812	982	1062	1232	1352
	STD	mm	4400	5000	5000	5550	5550	6700	6700	6700	8900	10050	11100	12250	13400	13400
L	SSL	mm	5000	5550	5550	6700	6700	8900	8900	8900	10050	11100	12250	13400	-	-
W	STD-SSL-MC-MC/SSL	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	STD	mm	2100	2100	2100	2100	2100	2100	2100	2100	2100	2550	2550	2550	2550	2550
П	SSL	mm	2100	2100	2100	2100	2100	2100	2100	2100	2550	2550	2550	2550	-	-

CLEARANCE AREA

TWA 202÷1352 VV/H/A

500 | 1800 | 1000 | 1800

- Chilled water from 12 to 7 °C, ambient air temperature 35 °C.
- 1. 2.
- Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.

 Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.

 Unit without tank and pump. 3.
- N.B. Weights of SSL versions are specified on technical brochure.
- N.B. Data of MC versions are specified on technical brochure.

TWA/FC 202÷1062 VV/H

AIRCOOLED LIQUID CHILLERS FREE-COOLING WITH AXIAL FANS, SCREW COMPRESSORS AND SHELL AND TUBE EXCHANGER.

The liquid Chillers of the TWA/FC 202÷1062 VV/H series, with HFO-R1234ze refrigerant, offer innovative technology to meet the needs of large systems for both domestic as well as industrial applications requiring the production of cooled water continuously year-round. The latest generation refrigerant HFO-R1234ze, with GWP<1 (Global Warming Potential), is the most environmentally sustainable refrigerant on the market, and meets the strictest international environmental regulations. During the cold months, in FREE-COOLING operating mode, the liquid returning from the system is cooled directly by forced convection of outdoor air through the condensing coil, thus saving energy by not operating the unit's Screw compressors. A 3-Way valve system is controlled by the electronic microprocessor controller, allowing functioning in CHILLER, FREE-COOLING or MIXED (simultaneously CHILLER and FREE-COOLING) modes.

Are available as option the new EC Inverter fans with high available static pressure and efficiency.

The units are compliant to the ErP 2021 Regulation for process cooling application if provided with EC or ECH accessory (EC Inverter fans).

FROM 232 KW TO 1144 KW.

VERSION

TWA/FC

Cooling only

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Screw compressors with built-in oil separator, suction filter, crankcase heater, oil sight glass, thermal protection and stepless capacity steps.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tubes and aluminium finned coils combined with FREE-COOLING coils.
- Shell and tube evaporator with two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- HFO-R1234ze refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors and thermocontacts for fans.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to $-20~^{\circ}\text{C}$. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, high and low pressure transducers on cooling circuit and an electrical heater on electrical board.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

Automatic circuit breakers IM

SI Unit silencement

BT Low water temperature kit

FC. EC Inverter fans

ECH EC Inverter fans with high available

static pressure

HRT/P Total heat recovery in parallel

TX Coil with pre-coated fins

SP Inertial tank

ΡU Single circulating pump

PUI Inverter single circulating pump

PD Double circulating pump

PDI Inverter double circulating pump

SPU Inertial tank and single circulating

pump

SPUI Inertial tank and Inverter single circulating pump

SPD Inertial tank and double circulating amug

SPDI Inertial tank and Inverter double circulating pump

П Inverter on one compressor and soft start

ID Inverter on all compressors

SS Soft start

WM Web Monitoring - Wireless remote monitoring (GPRS/EDGE/3G/TCP-IP) IS Modbus RTU protocol, RS485 serial

interface

IST Modbus TCP/IP protocol, Ethernet port

BACnet MSTP protocol, RS485 serial ISB interface

ISBT BACnet TCP/IP protocol, Ethernet port ISL LonWorks protocol, FTT-10 serial

interface

ISS SNMP protocol, Ethernet port IAV Remote set-point, 0-10 V signal IAA Remote set-point, 4-20 mA signal

IAS Remote signal for second set-point activation

IDL Demand limit from digital input

CP Potential free contacts

LOOSE ACCESSORIES:

MNHigh and low pressure gauges

CR Remote control panel

RP Coils protection metallic guards Rubber shock absorbers AG

Spring shock absorbers FL Flow switch

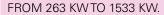
AM

TECHNIC	AL DATA -TWA/FC	202÷	1062	VV/ŀ	1									
MODEL			202	262	312	362	412	472	552	612	722	812	982	1062
	Cooling capacity (1)	kW	232	297	350	404	444	519	604	684	801	891	1044	1144
Cooling	Absorbed power (1)	kW	67	87	107	125	142	158	187	205	239	271	338	362
	EER (1)		3.46	3.41	3.27	3.23	3.13	3.28	3.23	3.34	3.35	3.29	3.09	3.16
	Cooling capacity (1)	kW	231	295	346	401	440	516	600	678	796	885	1035	1132
Cooling	Absorbed power (1)	kW	68	89	111	128	146	161	191	211	244	277	347	374
(EN14511)	EER (1)		3.40	3.31	3.12	3.13	3.01	3.20	3.14	3.21	3.26	3.19	2.98	3.03
(2.11.10.11)	SEPR with EC or ECH accessory (2)		5.59	5.57	5.52	5.63	5.5	5.67	5.63	5.66	5.71	5.74	5.50	5.50
Free-Cooling	Air temperature (3)	°C	2.0	0.0	1.3	1.0	-0.5	-0.5	0.5	-1.0	-0.5	-0.5	-1.0	0.0
cycle	Absorbed power (3)	kW	10.8	10.8	14.4	14.4	14.4	18.0	21.6	21.6	21.6	25.2	28.8	32.4
	Quantity	n°	2	2	2	2	2	2	2	2	2	2	2	2
Compressor	Refrigerant circuits	n°	2	2	2	2	2	2	2	2	2	2	2	2
	Capacity steps	n°						Step	less					
	Water flow	l/s	11.6	14.9	17.5	20.2	22.2	25.9	30.2	34.2	40.1	44.6	52.2	57.2
Water circuit	Pressure drops	kPa	77	96	143	118	132	77	104	124	98	108	138	169
	Water connections	DN	100	100	100	125	125	125	150	150	150	150	200	200
Electrical	Power supply	V/Ph/Hz						400/	/3/50					
characteristics	Max. running current	Α	211	275	327	355	413	467	520	605	670	731	764	831
Cilalacteristics	Max. starting current	А	299	417	496	586	642	723	791	904	947	1091	1206	1244
Unit with tank	Pump available static pressure	kPa	148	114	117	137	158	193	146	106	162	132	112	111
and pump	Tank water volume	1	2000	2000	2000	2000	2000	2000	2000	2000	3000	-	-	-
and pump	Water connections	DN	100	100	100	125	125	125	150	150	150	150	200	200
Sound pressure	STD version (4)	dB(A)	75	76	76	77	77	78	78	78	80	81	82	82
Sound pressure	With SL accessory (4)	dB(A)	72	73	73	74	74	75	75	75	77	78	79	79
Weights	Transport weight (5)	Kg	3150	3420	4020	4410	4560	5440	6800	7280	8420	8900	10690	11570
vveignts	Operating weight (5)	Kg	3390	3720	4400	4850	5040	6010	7420	7980	9420	10000	11890	12940

אומ	$I \subseteq N$	ISIO	NIC
יווט	$I \subseteq I \setminus$	OIO	

MODEL			202	262	312	362	412	472	552	612	722	812	982	1062
L	STD	mm	4400	4400	5550	5550	5550	6700	10050	10050	10050	10050	12250	13400
W	STD	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	STD	mm	2360	2360	2360	2360	2360	2360	2360	2360	2750	2750	2750	2750

TWA/FC 202÷1062 VV/H 500 | 1800 | 1000 | 1800



- 1. Chilled water (with ethylene glycol at 30%) from 15 to 10 °C, ambient air temperature 35 °C.
- 2. Seasonal energy efficiency of process cooling at high temperature. According to EU Regulation n. 2016/2281.
- 3. Ambient air temperature at which the cooling capacity indicated in point (1) is reached.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
 Unit without tank and pump. 4.
- 5.

VERSION

TWA

Cooling only

TWA/MC

Cooling only with MICROCHANNEL condensing coils

TWA/WP

Reversible Heat Pump

TWA/SSL

Super silenced cooling only

TWA/MC/SSL

Super silenced cooling only with MICROCHANNEL condensing coils

TWA/WP/SSL

Super silenced reversible Heat Pump

TWA 332÷1822 VV/Y/A

A CLASS ENERGY EFFICIENCY AIRCOOLED LIQUID CHILLERS AND HEAT PUMPS WITH AXIAL FANS, (INVERTER) SCREW COMPRESSORS AND SHELL AND TUBE EXCHANGER.

The TWA 332÷1822 VV/Y/A units in A CLASS energy efficiency have extremely high efficiency levels due to reduced electrical absorption and a high efficiency of the compressor-exchanger combination. The latest generation Screw compressors and the new design optimized in every detail ensure the reach of the highest efficiency. Furthermore, accessories as the Inverter control on Screw compressors, on circulating pumps and EC Inverter on fans are also available for getting the highest efficiency at part load. The super silenced version, obtained through acoustic insulation on compressors and wider exchangers, is particularly suitable for installations where extremely quiet operation are essential for the ideal execution of the system.

The Microchannel condensing coils, available on dedicated versions, ensure an even higher efficiency (high EER), having a better heat exchange than traditional coils. A wide range of accessories, factory fitted or supplied separately, complete the outstanding versatility and functionality of the series.

Are available as option the new EC Inverter fans with high available static pressure and efficiency. The Heat Pump versions are designed for hot water production up to 55 °C.

Cooling only models 322÷402 are compliant to the ErP 2021 Regulation. Cooling only models 462÷1822 are compliant to the ErP 2021 Regulation for process cooling application; for comfort cooling application they are compliant with EC or ECH accessory (EC Inverter fans). Heat pump models 322+482 are compliant to the ErP Regulation; models 602+1822 are compliant if provided with EC or ECH accessory (EC Inverter fans).

TWA 332÷1822 VV/J/A

On request, units can be supplied with R513A refrigerant.

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Screw compressors with built-in oil separator, suction filter, crankcase heater, oil sight glass, thermal protection and stepless capacity steps.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tube and aluminum finned coils or aluminium MICROCHANNEL coils.
- Shell and tube evaporator with two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R134a refrigerant. On request R513A refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors and thermocontacts for fans.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to 0 °C in cooling mode. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation and high and low pressure transducers on cooling circuit.
- Functioning in heating mode with outside air temperature down to -10 °C.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers Unit silencement SI CC Condensing control down to -20 °C ВТ Low water temperature kit

EC Inverter fans FC ĒČH EC Inverter fans with high available

static pressure HR Desuperheater HRT/S

Total heat recovery in series HRT/P Total heat recovery in parallel TΧ Coil with pre-coated fins TXB Coil with epoxy treatment EW External water connections

Inertial tank

SP PU Single circulating pump PUI Inverter single circulating pump PD Double circulating pump PDI Inverter double circulating pump SPU Inertial tank and single circulating pump

Inertial tank and Inverter single circulating pump

SPD	Inertial tank and double circulating
	pump

SPDI Inertial tank and Inverter double circulating pump FΕ Antifreeze heater for evaporator

FX Antifreeze heater for evaporator and pipes FΒ Antifreeze heater for evaporator/tank FQ Antifreeze heater on evaporator/tank

and pipes Antifreeze heater for evaporator, FΖ

single pump and pipes FΗ Antifreeze heater for evaporator, double pump and pipes

FU Antifreeze heater for evaporator/tank, single pump and pipes FD Antifreeze heater for evaporator/tank,

double pump and pipes Ш Inverter on one compressor and soft start

ID Inverter on all compressors SS Soft start

Web Monitoring - Wireless remote WM monitoring (GPRS/EDGE/3G/TCP-IP) IS Modbus RTU protocol, RS485 serial

Modbus TCP/IP protocol, Ethernet port IST

ISB BACnet MSTP protocol, RS485 serial interface

BACnet TCP/IP protocol, Ethernet port **ISBT** ISL LonWorks protocol, FTT-10 serial

interface ISS SNMP protocol, Ethernet port Remote set-point, 0-10 V signal IAV Remote set-point, 4-20 mA signal IAA

IAS Remote signal for second set-point activation

IDL Demand limit from digital input СР Potential free contacts

LOOSE ACCESSORIES:

MN High and low pressure gauges CR Remote control panel RP Coils protection metallic guards FΡ Coils protection metallic guards with filter AG Rubber shock absorbers

Spring shock absorbers

ΑM FΙ Flow switch

SPUI

TECHNIC	AL DATA -TWA 33	2÷182	2 V\	//Y/ <i>F</i>	4										
MODEL			332	352	402	462	482	602	742	912	1202	1342	1522	1702	1822
Cooling STD	Cooling capacity (1)	kW	263	313	359	413	464	574	696	839	959	1136	1264	1398	1533
versions	Absorbed power (1)	kW	82	96	114	131	146	179	219	256	305	352	380	440	480
VELSIOLIS	EER (1)		3.21	3.26	3.15	3.15	3.18	3.21	3.18	3.28	3.14	3.23	3.33	3.18	3.19
	Cooling capacity (1)	kW	262	312	358	412	463	573	694	837	956	1132	1263	1397	1532
	Absorbed power (1)	kW	83	97	115	132	147	180	221	258	308	356	383	444	485
	EER (1)		3.16	3.22	3.11	3.12	3.15	3.18	3.14	3.24	3.10	3.18	3.3	3.15	3.16
Cooling STD	SEER (2)		4.13	4.25	4.22	4.14	4.18	4.19	4.11	4.25	4.3	4.23	4.24	4.17	4.22
versions (EN14511)	Energy Efficiency (2)	%	162	167	166	163	164	165	161	167	169	166	167	164	166
VCI3IO113 (E1V1 -1 011)	SEER with EC or ECH		4.63	4.76	4.73	4.73	4.74	4.77	4.65	4.86	4.85	4.69	4.74	4.71	4.73
	accessory (2)		4.03	4.70	4.73	4.73	4.74	4.77	4.00	4.00	4.00	4.03	4.74	4.71	4.73
	Energy Efficiency with EC or ECH accessory (2)	%	182	187	186	186	187	188	183	191	191	185	187	185	186
Cooling MC	Cooling capacity (1)	kW	263	313	359	413	464	574	696	839	959	1136	1264	1398	1533
versions	Absorbed power (1)	kW	80	94	112	128	143	175	215	251	299	345	372	431	470
versions	EER (1)		3.29	3.33	3.21	3.23	3.24	3.28	3.24	3.34	3.21	3.29	3.4	3.24	3.26
	Cooling capacity (1)	kW	262	312	358	412	463	573	694	837	956	1132	1263	1397	1532
	Absorbed power (1)	kW	81	95	113	129	144	176	217	253	302	349	375	435	475
	EER (1)		3.23	3.28	3.17	3.19	3.22	3.26	3.20	3.31	3.17	3.24	3.37	3.21	3.23
Cooling MC	SEER con EC/ECH (2)		4.14	4.26	4.23	4.15	4.19	4.19	4.12	4.25	4.31	4.25	4.24	4.17	4.23
versions (EN14511)	Energy Efficiency (2)	%	163	167	166	163	165	165	162	167	169	167	167	164	166
VEISIONS (LIVI4511)	SEER with EC or ECH		4.64	4.77	4.74	4.74	4.75	4.78	4.66	4.87	4.86	4.7	4.75	4.72	4.74
	accessory (2)		4.64	4.//	4.74	4.74	4.75	4.78	4.66	4.87	4.86	4.7	4.75	4.72	4.74
	Energy Efficiency with EC or ECH accessory (2)	%	183	188	187	187	187	188	183	192	191	185	187	186	187
Heating CTD	Heating capacity (3)	kW	272	324	372	428	480	594	721	869	993	1176			
Heating STD	Absorbed power (3)	kW	81	95	113	130	144	177	217	253	302	348			
versions	COP (3)		3.36	3.41	3.29	3.29	3.33	3.36	3.32	3.43	3.29	3.38			
	Heating capacity (3)	kW	273	325	373	430	482	596	723	872	996	1180			
Haratina CTD	Absorbed power (3)	kW	83	97	116	133	147	181	222	259	309	356			
Heating STD	COP (3)		3.29	3.34	3.23	3.23	3.27	3.29	3.26	3.36	3.22	3.31			
versions (EN14511)	SCOP (4)		3.20	3.32	3.34	3.33	3.32	3.34	3.32	3.36	3.32	3.36			
	Energy Efficiency (4)	%	125	130	131	130	130	131	130	131	130	131			
	Quantity	n°	2	2	2	2	2	2	2	2	2	2	2	2	2
Compressor	Refrigerant circuits	n°	2	2	2	2	2	2	2	2	2	2	2	2	2
'	Capacity steps	n°					1		Steples	3					
	Water flow	l/s	12.57	14.95	17.15	19.73	22.17	27.42	33.25		45.82	54.28	60.39	66.79	73.24
Evaporator	Pressure drops	kPa	30	26	49	44	34	28	42	34	39	48	38	46	59
	Water connections	DN	125	125	150	150	150	150	150	200	200	200	250	250	250
Florenical	Power supply	V/Ph/Hz							400/3/50						
Electrical	Max. running current	A	201	237	261	301	337	393	485	580	664	720	922	876	1002
characteristics	Max. starting current	Α	263	281	337	361	405	504	596	785	827	855	1267	1261	1379
11.26 20.4 1	Pump available static pressure	kPa	130	150	155	140	175	160	165	145	120	160	140	95	180
Unit with tank	Tank water volume	1	2000	2000	2000	2000	2000	2000	3000	3000					
and pump	Water connections	DN	100	100	100	125	125	150	150	150	200	200	200	200	200
	STD versions (5)	dB(A)	76	76	76	76	77	76	77	77	77	78	79	79	80
	STD versions with SL		73	73	73	73	74	73	74	74	74	75	70	76	_
	accessory (5)	dB(A)						/3		/4		/5	76	/6	77
Sound pressure	SSL versions (5)	dB(A)	66	66	66	65	66	66	67	68	68				
•	MC versions (5)	dB(A)	75	75	75	75	76	75	76	76	76	77	78	78	79
	MC versions with SL accessory (5)	dB(A)	72	72	72	72	73	72	73	73	73	74	75	75	76
	MC/SSL versions (5)	dB(A)	65	65	65	64	65	65	66	67	67				
\\/aimhta	Transport weight (6)	Kg	3562	3609	3708	4207	4782	5202	6496	7430	7484	8773	9640	10380	10800
Weights	Operating weight (6)	Kg	3690	3740	3850	4390	5070	5540	6790	8070	8170	9230	10160	10890	11270

— •		10	
	NИ	1191	NS
	IVI	\mathbf{v}	

MO	DEL		332	352	402	462	482	602	742	912	1202	1342	1522	1702	1822
	STD-MC	mm	4400	4400	5000	5550	6200	6700	8900	11100	11100	11100	13400	13400	13400
	SSL-MC/SSL	mm	5550	5550	5550	6700	8900	8900	11100	11100	11100	13400			
L	WP	mm	5550	5550	5550	7750	7750	8900	10050	13400	13400	13400			
	WP/SSL	mm	7750	7750	7750	8900	10050	10050	13400	13400	13400				
W	STD-SSL-MC-MC/SSL	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
VV	WP-WP/SSL	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200			
	STD-MC	mm	2100	2100	2100	2100	2100	2100	2100	2100	2100	2500	2500	2500	2500
ш	SSL-MC/SSL	mm	2100	2100	2100	2100	2100	2100	2100	2500	2500	2500			
П	WP	mm	2100	2100	2100	2100	2100	2100	2100	2100	2100	2500			
	WP/SSL	mm	2100	2100	2100	2100	2100	2100	2100	2500	2500				

TWA 332÷1822 VV/Y/A

500 | 1800 | 1000 | 1800

- Chilled water from 12 to 7 °C, ambient air temperature 35 °C.
- 2. Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- 3. Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b.
- Seasonal energy efficiency of heating at low temperature with average climatic conditions. According to EU Regulation n. 813/2013.

 Sound pressure level measured in free field conditions at 1 m from the unit. 4.
- 5. According to ISO 3744.
 Unit without tank and pump.
- N.B. Weights of SSL and WP versions are specified on technical brochure.
- N.B. Data of MC versions are specified on technical brochure.

TWA/FC 302÷1622 VV/Y

AIRCOOLED LIQUID CHILLERS FREE-COOLING WITH AXIAL FANS, SCREW COMPRESSORS AND SHELL AND TUBE EXCHANGER.

The liquid Chillers of the TWA/FC 302÷1622 VV/Y series, with R134a refrigerant, offer innovative technology to meet the needs of large systems for both domestic as well as industrial applications requiring the production of cooled water continuously year-round.

During the cold months, in FREE-COOLING operating mode, the liquid returning from the system is cooled directly by forced convection of outdoor air through the condensing coil, thus saving energy by not operating the unit's Screw compressors. A 3-Way valve system is controlled by the electronic microprocessor controller, allowing functioning in CHILLER, FREE-COOLING or MIXED (simultaneously CHILLER and FREE-COOLING) modes.

Are available as option the new EC Inverter fans with high available static pressure and efficiency.

The models 302+392 are compliant to the ErP 2021 Regulation for process cooling application with EC or ECH accessory (EC Inverter fans). The models 452÷1622 are compliant to the ErP 2021 Regulation for process cooling application with EC or ECH accessory (EC Inverter fans) and ID accessory (Inverter on all compressors).

On request, units can be supplied with R513A refrigerant (TWA/FC 302+1622 VV/J).

FROM 217 KW TO 1460 KW.

VERSION

TWA/FC

Cooling only

FEATURES

- · Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Screw compressors with built-in oil separator, suction filter, crankcase heater, oil sight glass, thermal protection and stepless capacity steps.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tubes and aluminium finned coils combined with FREE-COOLING coils.
- Shell and tube evaporator with two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R134a refrigerant. On request R513A refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors and thermocontacts for fans.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, high and low pressure transducers on cooling circuit and an electrical heater on electrical board.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers SL Unit silencement

ВТ Low water temperature kit

EC EC Inverter fans

ECH EC Inverter fans with high available static pressure

HRT/P Total heat recovery in parallel

TX Coil with pre-coated fins

SP Inertial tank

PUSingle circulating pump

PHI Inverter single circulating pump

PD Double circulating pump

PDI Inverter double circulating pump

SPU Inertial tank and single circulating pump

SPUI Inertial tank and Inverter single circulating pump

SPD Inertial tank and double circulating pump

SPDI Inertial tank and Inverter double circulating pump

Ш Inverter on one compressor and soft start

ID Inverter on all compressors

SS

WW Web Monitoring - Wireless remote monitoring (GPRS/EDGE/3G/TCP-IP)

IS Modbus RTU protocol, RS485 serial interface

IST Modbus TCP/IP protocol, Ethernet port BACnet MSTP protocol, RS485 serial **ISB**

BACnet TCP/IP protocol, Ethernet port **ISBT**

ISL LonWorks protocol, FTT-10 serial interface

ISS SNMP protocol, Ethernet port IAV Remote set-point, 0-10 V signal IAA Remote set-point, 4-20 mA signal

IAS Remote signal for second set-point activation

Demand limit from digital input IDL

CP Potential free contacts

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel

RΡ Coils protection metallic guards AG Rubber shock absorbers Spring shock absorbers

FL Flow switch

AM

TECHNIC.	AL DATA -TWA/FC	302÷	1622 VV	Υ					
MODEL			302	322	342	392	452	492	592
	Cooling capacity (1)	kW	217	258	315	375	418	473	569
Cooling	Absorbed power (1)	kW	83	97	114	148	157	184	210
	EER (1)		2.61	2.66	2.76	2.53	2.66	2.57	2.7
	Cooling capacity (1)	kW	215	255	311	371	413	469	565
	Absorbed power (1)	kW	85	100	118	152	162	188	215
Cooling	EER (1)		2.53	2.55	2.64	2.44	2.55	2.49	2.63
(EN14511)	SEPR with EC or ECH accessory (2)		5.00	5.04	5.03	5.03	5.30	5.20	5.40
	SEPR with EC or ECH and ID accessory (2)		5.35	5.39	5.38	5.38	5.64	5.57	5.70
Free-Cooling	Air temperature (3)	°C	-2.5	-2.0	-2.0	-4.5	-3.7	-4.0	-3.5
cycle	Absorbed power (3)	kW	8	12	12	12	12	16	20
	Quantity	n°	2	2	2	2	2	2	2
Compressor	Refrigerant circuits	n°	2	2	2	2	2	2	2
	Capacity steps	n°				Stepless	5		
	Water flow	l/s	11.22	13.34	16.29	19.38	21.61	24.45	29.4
Nater circuit	Pressure drops	kPa	125	170	180	168	191	130	115
	Water connections	DN	100	100	100	125	125	125	150
	Power supply	V/Ph/Hz	-	-		400/3/50			
Electrical	Max. running current	Α Α	194	201	237	261	293	337	39:
characteristics	Max. starting current	A	256	263	281	337	353	405	50-
	Pump available static pressure	kPa	125	105	130	105	100	140	10!
Jnit with tank	Tank water volume	I I	1100	1100	1100	1100	1100	1100	200
and pump	Water connections	DN	100	100	100	125	125	125	150
	STD version (4)	dB(A)	75	75	76	76	76	77	77
Sound pressure	With SL accessory (4)	dB(A)	72	72	73	73	73	74	74
	,		3250	3320	3620	3805			531
Neights	Transport weight (5)	Kg					4180		_
	Operating weight (5)	Kg	3450	3520	3870	4060	4530	4850	570
MODEL			732	902	110	02	1272	1432	1622
	Cooling capacity (1)	kW	709	847	99	94	1139	1288	1460
Cooling	Absorbed power (1)	kW	263	316	37	70	434	490	541
	EER (1)		2.70	2.68	2.6	69	2.62	2.63	2.70
	Cooling capacity (1)	kW	702	838	98	34	1126	1272	1436
	Absorbed power (1)	kW	270	325	38	30	447	507	565
Cooling	EER (1)		2.60	2.58	2.5	59	2.52	2.51	2.54
(EN14511)	SEPR with EC or ECH accessory (2)		5.40	5.20	5.2		5.20	5.30	5.30
	SEPR with EC or ECH and ID accessory (2)		5.74	5.5	5.!		5.5	5.62	5.64
Free-Cooling	Air temperature (3)	°C	-4.3	-4.3	-4	-	-4.7	-4.1	-3.9
cycle	Absorbed power (3)	kW	20	22	2		25	29	36
	Quantity	n°	2	2	2		2	2	2
Compressor	Refrigerant circuits	n°	2	2	2	2	2	2	2
	Capacity steps	n°				Stepless	3		-
	Water flow	l/s	36.65	43.79	51.	38	58.88	66.58	75.4
Vater circuit	Pressure drops	kPa	160	164	16	30	200	225	300
	Water connections	DN	150	150	20	00	200	200	200
	Power supply	V/Ph/Hz		-		400/3/50			
Electrical	Max. running current	Α Α	437	565	64		713	720	896
characteristics	Max. starting current	A	526	770	81		848	855	1688
	Pump available static pressure	kPa	115	130	14		170	120	115
Jnit with tank	Tank water volume	I I	2000	2000		00			
and pump	Water connections	DN							
			150 77	150	20	9	200	200 79	200
Sound pressure	STD version (4)	dB(A)		79			79		80
	With SL accessory (4)	dB(A)	74	76	7	ь	76	76	77

DIV	$I \square I$	ıcı	\sim $^{\prime}$	ıc
DIN		וכו	יוט	VO

Weights

MODEL			302	322	342	392	452	492	592	732	902	1102	1272	1432	1622
L	STD	mm	4400	4400	4400	4400	5550	5550	6700	10050	10050	10050	10050	11100	13400
W	STD	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	STD	mm	2360	2360	2360	2360	2360	2360	2360	2360	2360	2750	2750	2750	2750

7710

8350

8605

9410

CLEARANCE AREA

Transport weight (5)

Operating weight (5)

TWA/FC 302÷1622 VV/Y

500 | 1800 | 1000 | 1800

Kg

Kg

6820

7420

NOTES

- 1.
- Chilled water (with ethylene glycol at 30%) from 15 to 10 °C, ambient air temperature 35 °C.
 Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281. 2.
- 3. Ambient air temperature at which the cooling capacity indicated in point (1) is reached.

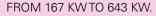
9590

10550

10070

10900

11750


12970

- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- 5. Unit without tank and pump.

VERSION

TWA/EP

Multifunctional unit

TWA/EP/SSL

Super silenced multifunctional unit

ACCESSORIES

FACTORY FITTED ACCESSORIES:

cooling side

cooling side

Inverter single circulating pump

Inverter double circulating pump

Double circulating pump cooling side

TWA/EP 172+632 S/K/P

AIRCOOLED 4-PIPE MULTIFUNCTIONAL UNITS WITH AXIAL FANS, SCROLL COMPRESSORS AND PLATE EXCHANGERS.

ENERGYPOWER is the range of high efficiency multifunctional units for 4-Pipe systems.

The units TWA/EP 172÷632 S/K/P feature R410A refrigerant and Scroll compressors activated in series based on the requested thermal load, to reach high EER/COP/TER and SEER/SCOP energy values. The units are characterized by double cooling circuit. Thanks to the advanced control system, ENERGYPOWER units can simultaneously fulfill the heating, cooling and domestic hot water request of the building. The unit can manage the opposed thermal loads at the same time and reach the highest possible efficiency. ENERGYPOWER units make the traditional layout of the technical plants easier because the production of thermal energy for the several users are joint in one unit only; the result is an advantage in terms of installation, maintenance and management and in the meantime of the comfort needs.

Are available as option the new EC Inverter fans with high available static pressure and efficiency. Units are designed for hot water production up to 55 °C.

The models 172÷392 are compliant to the ErP Regulation. The models 492÷632 are compliant to the ErP 2021 Regulation for comfort cooling application if provided with EC or ECH accessory (EC Inverter fans).

On request, units can be supplied with R452B (TWA/EP 172÷632 S/G/P) or R454B (TWA/EP 172÷632 S/L/P) refrigerant.

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Axial fans directly coupled to an electric motor with external rotor.
- Copper tube and aluminum finned coils.
- Condenser AISI 316 stainless steel braze welded plates type with two independent circuits on the refrigerant side and one on the water side. On the units it is always installed an antifreeze heater.
- Evaporator AISI 316 stainless steel braze welded plates type with two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch. On the units it is always installed an antifreeze heater.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R410A refrigerant. On request R452B or R454B refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors and thermocontacts for fans.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C in cooling mode. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, high and low pressure transducers on cooling circuit and an electrical heater on electrical board.
- Functioning in heating mode with outside air temperature down to -15 °C.
- Microprocessor control and regulation system.

and pipes heating side

Touch screen Interface

Web Monitoring - Wireless remote

monitoring (GPRS/EDGE/3G/TCP-IP)

Modbus RTU protocol, RS485 serial

Soft start

interface

SS

TS

IS

WM

ORY FITTED ACCESSORIES:	PSH PSIH	Single circulating pump heating side Inverter single circulating pump	IST ISB	Modbus TCP/IP protocol, Ethernet port BACnet MSTP protocol, RS485 serial
Automatic circuit breakers Unit silencement Cooling circuit shut-off valve on discharge line	PDH PDIH	heating side Double circulating pump heating side Inverter double circulating pump heating side	ISBT ISL	interface BACnet TCP/IP protocol, Ethernet port LonWorks protocol, FTT-10 serial interface
Cooling circuit shut-off valve on liquid line Low water temperature kit	FNC FNH FGC	Antifreeze heater for pipes cooling side Antifreeze heater for pipes heating side Antifreeze heater for single pump	ISS IAV IAA	SNMP protocol, Ethernet port Remote set-point, 0-10 V signal Remote set-point, 4-20 mA signal
EC Inverter fans EC Inverter fans with high available	FMC	and pipes cooling side Antifreeze heater for double pump and pipes cooling side	IAS IDL	Remote signal for second set-point activation Demand limit from digital input
static pressure Coil with pre-coated fins Single circulating pump cooling side	FGH	Antifreeze heater for single pump and pipes heating side	CP	Potential free contacts
Inverter single circulating pump	FMH	Antifreeze heater for double pump	LOOS	SE ACCESSORIES:

LOOSE ACCESSORIES:

MN	High and low pressure gauges
CR	Remote control panel
RP	Coils protection metallic guards
AG	Rubber shock absorbers
AM	Spring shock absorbers

IM

SL

RFM

RFL

ВТ

FC

ΤX

PSC

PSIC

PDC

PDIC

ECH

TECHNIC/	AL DATA -TWA/EP	17 <u>2÷</u>	63 <u>2</u> S	S/K/F										
MODEL			172	212	222	242	272	302	342	392	492	542	592	632
	Cooling capacity (1)	kW	167	190	216	241	264	301	339	395	459	522	583	643
Cooling only	Absorbed power (1)	kW	57	69	75	85	93	104	114	140	169	193	210	225
	EER (1)		2.93	2.75	2.88	2.84	2.84	2.89	2.97	2.82	2.72	2.70	2.78	2.86
	Cooling capacity (1)	kW	166	189	215	240	263	300	338	394	457	520	581	641
	Absorbed power (1)	kW	58	70	76	85	94	105	115	141	171	195	212	227
	EER (1)		2.86	2.70	2.83	2.82	2.80	2.86	2.94	2.79	2.67	2.67	2.74	2.82
Cooling only (EN14511)	SEER (2)		4.14	4.22	4.18	4.17	4.22	4.19	4.2	4.26	4.31	4.34	4.39	4.3
	Energy Efficiency (2)	%	163	166	164	164	166	165	165	167	169	171	173	169
	SEER with EC or ECH accessory (2)		4.44	4.38	4.43	4.42	4.42	4.44	4.47	4.49	4.56	4.56	4.55	4.55
	Energy Efficiency with EC or ECH accessory (2)	%	175	172	174	174	174	175	176	177	179	179	179	179
	Heating capacity (3)	kW	180	204	231	257	281	318	361	427	515	570	632	693
Heating only	Absorbed power (3)	kW	55	64	72	79	86	97	109	128	159	168	195	208
	COP (3)		3.25	3.20	3.22	3.25	3.28	3.28	3.31	3.34	3.24	3.39	3.24	3.33
	Heating capacity (3)	kW	181	205	232	258	282	319	362	429	517	572	634	696
	Absorbed power (3)	kW	56	65	73	80	87	98	111	131	162	172	200	214
Heating only	COP (3)		3.23	3.15	3.18	3.23	3.24	3.26	3.26	3.27	3.19	3.33	3.17	3.25
(EN14511)	SCOP (4)		3.52	3.36	3.65	3.58	3.43	3.63	3.68	3.51	3.51	3.80	3.56	3.53
	Energy Efficiency (4)	%	138	131	143	140	134	142	144	137	137	149	139	138
	Cooling capacity (5)	kW	170	195	214	243	270	303	334	405	465	543	594	652
	Heating capacity (5)	kW	220	255	281	318	351	396	436	527	613	712	777	849
Cooling + Heating	Absorbed power (5)	kW	50	60	67	75	81	93	102	122	148	169	183	197
	TER (5)	IX V	7.80	7.50	7.39	7.48	7.67	7.52	7.55	7.64	7.28	7.43	7.49	7.62
	Cooling capacity (5)	kW	169	194	213	242	269	302	333	404	463	541	592	650
Cooling + Heating	<u> </u>	kW	221	256	282	319	352	397	438	529	615	715	780	852
(EN14511)	Absorbed power (5)	kW	51	61	68	76	82	94	103	123	150	171	185	199
(LIVITOTI)	TER (5)	KVV	7.65	7.38	7.28	7.38	7.57	7.44	7.49	7.59	7.19	7.35	7.42	7.55
	Quantity	n°	4	4	4	4	4	4	6	6	6	6	6	6
Compressor	Refrigerant circuits	n°	2	2	2	2	2	2	2	2	2	2	2	2
Compressor	Capacity steps	n°				<u> </u>						<u> </u>		
	Water flow	l/s	7.98	9.08	10.32	11.51	12.61	14.38	16.20	18.87	21.93	24.94	27.85	30.72
Evaporator -	Pressure drops	kPa	34	33	36	35	42	36	45	44	53	43	34	40
cooling side	Water connections	DN	100	100	100	100	100	100	100	100	125	150	150	150
	Water flow (5)	I/s	8.60	9.75	11.04	12.28	13.43	15.19	17.25	20.40	24.61	27.23	30.20	33.11
Condenser -	Pressure drops (5)	kPa	35	36	39	30	37	33	43	43	42	49	48	54
heating side	Water connections (5)	DN	100	100	100	100	100	100	100	100	125	150	150	150
		V/Ph/Hz	100	100	100	100	100		/3/50	100	120	150	150	150
Electrical	Power supply		133	151	171	186	201	227	255	301	386	416	453	483
characteristics	Max. running current	A												
The factorial	Max. starting current	A kPo	301 175	328 170	347 160	400 150	415 130	488 145	432 125	515 160	647 125	755 165	792 165	822 145
Unit with pump - cooling side	Pump available static pressure	kPa DN	100		100	100	100	100	100	100		150	150	_
	Water connections	kPa		100	150		125		120		125			150 120
Unit with pump -	Pump available static pressure	-	170	165		145	_	140	_	150	110	150	140	
heating side	Water connections	DN	100	100	100	100	100	100	100	100	125	150	150	150
0 1	STD version (6)	dB(A)	70	70	71	71	71	72	74	74	76	77	78	79
Sound pressure	With SL accessory (6)	dB(A)	67	67	68	68	68	69	71	71	73	74	75	76
	SSL version (6)	dB(A)	64	64	65	65	65	66	67	67	70	70	71	72
Weights	Transport weight	Kg	2200	2230	2350	2390	2420	3180	3420	3530	4530	4600	5320	5350
•	Operating weight	Kg	2300	2330	2450	2500	2530	3310	3560	3680	4730	4840	5630	5670

DIMENSIONS

MODEL			172	212	222	242	272	302	342	392	492	542	592	632
1	STD	mm	3350	3350	3350	3350	3350	5000	5000	5000	6200	6200	7200	7200
L	SSL	mm	3350	3350	3350	5000	5000	5000	6200	6200	7200	7200	7200	7200
W	STD/SSL	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	STD/SSL	mm	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100

CLEARANCE AREA

TWA/EP 172÷632 S/K/P

500 | 1800 | 1000 | 1800

- Chilled water from 12 to 7 °C, ambient air temperature 35 °C.
- 2. Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b. Seasonal energy efficiency of heating at low temperature with average climatic 3. 4.
- conditions. According to EU Regulation n. 813/2013. Chilled water from 12 to 7 °C, heated water from 40 to 45 °C. 5.
- 6. Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of SSL version are specified on technical brochure.

VERSION TWA/EP

Multifunctional unit

TWA/EP/SSL

Super silenced multifunctional unit

TWA/EP 362+1492 VV/Y

AIRCOOLED 4-PIPE MULTIFUNCTIONAL UNITS WITH AXIAL FANS, (INVERTER) SCREW COMPRESSORS AND SHELL AND TUBE EXCHANGERS.

ENERGYPOWER is the range of high efficiency multifunctional units for 4-Pipe systems.

The units TWA/EP 362÷1492 VV/Y ENERGYPOWER, with R134a refrigerant, are provided with latest generation Screw compressors, to reach high EER/COP/TER and SEER/SCOP energy values. Thanks to the advanced control system, the units can simultaneously fulfill the heating, cooling and domestic hot water request of the building. The unit can manage the opposed thermal loads at the same time and reach the highest possible efficiency. ENERGYPOWER units make the traditional layout of the technical plants easier because the production of thermal energy for the several users are joint in one unit only; the result is an advantage in terms of installation, maintenance and management and in the meantime of the comfort needs. Furthermore, accessories as the Inverter control on one or both Screw compressors, fans and on circulating pumps (EC Inverter) are also available for getting the highest efficiency at part load.

Are available as option the new EC Inverter fans with high available static pressure and efficiency.

The models 362÷552 are compliant to the ErP Regulation. The models 632÷1492 are compliant to the ErP 2021 Regulation for comfort cooling application if provided with EC or ECH accessory (EC Inverter fans) and ID accessory (Inverter on all compressors).

On request, units can be supplied with R513A refrigerant (TWA/EP 362÷1492 VV/J).

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Screw compressors with built-in oil separator, suction filter, crankcase heater, oil sight glass, thermal protection and stepless capacity steps.
- Axial fans directly coupled to an electric motor with external rotor.
- Copper tube and aluminum finned coils.
- Shell and tube type condenser, with two independent circuits on the refrigerant side and one on the water side.
- Shell and tube evaporator, with two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R134a refrigerant. On request R513A refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors and thermocontacts for fans.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to 0 °C in cooling mode. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation and high and low pressure transducers on cooling circuit.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers

SL Unit silencement

Condensing control down to -20 °C CC

BT Low water temperature kit

FC. EC Inverter fans

EC Inverter fans with high available FCH static pressure

ΤX Coil with pre-coated fins

PUC Single circulating pump cooling side PUIC Inverter single circulating pump

cooling side

PDC Double circulating pump cooling side PDIC Inverter double circulating pump

cooling side

FΙ Antifreeze heater for evaporator

and condenser 106

FNC	Antifreeze	heater	for	pipes	cool	ing
	side					

FNH Antifreeze heater for pipes heating side

Antifreeze heater for single pump FGC and pipes cooling side

FMC Antifreeze heater for double pump and pipes cooling side

Ш Inverter on one compressor and soft start

ID Inverter on all compressors

SS Soft start

TS Touch screen Interface

WM Web Monitoring - Wireless remote monitoring (GPRS/EDGE/3G/TCP-IP)

IS Modbus RTU protocol, RS485 serial interface

IST Modbus TCP/IP protocol. Ethernet port

ISB BACnet MSTP protocol, RS485 serial interface

ISBT BACnet TCP/IP protocol, Ethernet port

ISL LonWorks protocol, FTT-10 serial interface

ISS SNMP protocol, Ethernet port IAV Remote set-point, 0-10 V signal IAA Remote set-point, 4-20 mA signal IAS

Remote signal for second set-point activation

IDL Demand limit from digital input СР Potential free contacts

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel

RP Coils protection metallic guards

AG Rubber shock absorbers AM Spring shock absorbers

FL Flow switch

TECHNIC	AL DATA -TWA/EP	362÷	1492 `	VV/Y								
MODEL			362	412	482	552	632	742	882	1082	1292	1492
	Cooling capacity (1)	kW	278	312	366	423	484	564	676	822	978	1133
Cooling only	Absorbed power (1)	kW	89	100	116	133	153	177	210	258	315	365
	EER (1)		3.12	3.12	3.16	3.18	3.16	3.19	3.22	3.19	3.10	3.10
	Cooling capacity (1)	kW	277	311	364	421	482	562	674	819	974	1128
	Absorbed power (1)	kW	90	101	118	135	155	179	212	261	319	370
	EER (1)		3.08	3.08	3.08	3.12	3.11	3.14	3.18	3.14	3.05	3.05
Cooling only	SEER (2)		3.93	3.93	3.89	3.92	3.91	3.92	3.92	3.90	3.88	3.88
(EN14511)	Energy Efficiency (2)	%	154	154	153	154	153	154	154	153	152	152
	SEER with EC or ECH		4.73	4.73	4.73	4.75	4.74	4.75	4.78	4.75	4.72	4.72
	accessory (2) Energy Efficiency with EC or ECH accessory (2)	%	186	186	186	187	187	187	188	187	186	186
-	Heating capacity (3)	kW	283	320	375	431	490	572	672	838	990	1156
Heating only	Absorbed power (3)	kW	86	91	107	122	139	159	190	231	271	313
0 ,	COP (3)		3.29	3.52	3.50	3.53	3.53	3.60	3.54	3.63	3.65	3.69
	Heating capacity (3)	kW	284	321	376	432	491	574	674	840	992	1159
	Absorbed power (3)	kW	88	93	109	124	141	162	193	235	276	319
Heating only	COP (3)		3.23	3.45	3.45	3.48	3.48	3.54	3.49	3.57	3.59	3.63
(EN14511)	SCOP (4)		3.20	3.42	3.41	3.40	3.39	3.69	3.63	3.71	3.90	4.00
	Energy Efficiency (4)	%	125	134	133	133	133	145	142	145	153	157
	Cooling capacity (5)	kW	276	318	370	429	492	575	686	834	996	1181
	Heating capacity (5)	kW	359	404	469	544	621	726	865	1054	1261	1495
Cooling + Heating	Absorbed power (5)	kW	83	87	99	115	130	152	179	220	265	314
	TER (5)		7.65	8.30	8.47	8.46	8.56	8.56	8.66	8.58	8.52	8.52
	Cooling capacity (5)	kW	275	317	368	427	490	573	684	831	992	1176
Cooling + Heating	0 1 7	kW	360	405	470	545	622	728	867	1057	1264	1499
(EN14511)	Absorbed power (5)	kW	84	88	101	117	132	154	181	223	269	319
(=::::	TER (5)		7.56	8.20	8.30	8.31	8.42	8.45	8.57	8.47	8.39	8.39
	Quantity	n°	2	2	2	2	2	2	2	2	2	2
Compressor	Refrigerant circuits	n°	2	2	2	2	2	2	2	2	2	2
00p. 0000.	Capacity steps	n°			_		Stepless					
	Water flow	I/s	13.28	14.91	17.49	20.21	23.12	26.95	32.30	39.27	46.73	54.13
Evaporator -	Pressure drops	kPa	33	43	51	48	48	46	48	47	52	64
cooling side	Water connections	DN	100	100	125	125	125	150	150	150	150	200
	Water flow (6)	I/s	13.52	15.29	17.92	20.59	23.41	27.33	32.11	40.04	47.30	55.23
Condenser -	Pressure drops (6)	kPa	21	23	20	18	17	20	18	20	20	20
heating side	Water connections (6)	DN	100	100	125	125	125	150	150	150	150	200
	Power supply	V/Ph/Hz	100	100	120	120		/3/50	130	100	130	
Electrical	Max. running current	Α Α	237	237	269	301	309	393	445	580	664	720
characteristics	Max. starting current	A	281	281	345	361	369	504	534	785	827	855
-	Pump available static pressure	kPa	185	155	155	140	155	140	115	135	100	145
Unit with pump	Water connections	DN	100	100	125	125	125	150	150	150	150	200
	STD version (5)	dB(A)	77	77	77	78	78	78	79	80	80	81
Sound pressure	With SL accessory (5)	dB(A)	73	73	74	75	78	75	79	76	76	77
Souria pressure	SSL version (5)	dB(A)	67	67	68	69	69	70	70	76	76	72
				4110		5460	5970	6950	8100	9340	9760	10430
Weights	Transport weight Operating weight	Kg Kg	4090 4330	4460	4820 5280	5980	6480	7570	8880	10200	10740	11800
	1 -1-1-0099	19	.500		1 0200	1 5555	1 0 ,00		, 5500	.5200		

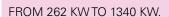
V/II	\sim		\ \ >
MEI		\mathbf{v}	$\mathbf{v} = \mathbf{v}$

MODEL			362	412	482	552	632	742	882	1082	1292	1492
	STD	mm	5550	5550	6700	7750	8900	8900	10050	11100	11100	11100
L	SSL	mm	6700	6700	7750	7750	8900	10050	11100	12250	12250	12250
W	STD/SSL	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
11	STD	mm	2100	2100	2100	2100	2100	2500	2500	2500	2500	2500
Н	SSL	mm	2100	2100	2100	2100	2500	2500	2500	2500	2500	2500

TWA/EP 362÷1492 VV/Y 500 | 1800 | 1000 | 1800

- Chilled water from 12 to 7 °C, ambient air temperature 35 °C.
- 2. Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- Hegulation n. 2016/2281.

 Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b.


 Seasonal energy efficiency of heating at low temperature with average climatic conditions. According to EU Regulation n. 813/2013.

 Chilled water from 12 to 7 °C, heated water from 40 to 45 °C. 3. 4.
- 5.
- 6. Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of SSL version are specified on technical brochure.

VERSION

TWA

Cooling only

TWA/MC

Cooling only with MICROCHANNEL coils

TWA 281÷1432TT/H

A CLASS ENERGY EFFICIENCY AIRCOOLED LIQUID CHILLERS WITH AXIAL FANS, TURBOCOR (MAGNETIC LEVITATION) COMPRESSORS AND FLOODED SHELL AND TUBE EXCHANGER.

The innovative TWA 281÷1432 TT/H **TURBOLINE** units, with **HFO-R1234ze** refrigerant, are designed to provide an effective solution to highly selective system needs. The latest generation refrigerant HFO-R1234ze, with GWP<1 (Global Warming Potential), is the most environmentally sustainable refrigerant on the market, and meets the strictest international environmental regulations. Furthermore, thanks to Turbocor compressors, the units perform with top efficiency at partial loads, low inrush currents, an excellent silent functioning and reduced weight.

The use of TURBOCOR dynamic partial-load oil-free magnetic levitation compressors managed by the TURBOSOFT self-adaptive electronic control, of flooded shell & tube evaporator and innovative heat exchangers, traditional or Microchannel, results in a high energy efficiency with unequalled SEER values, with minimum water content, and an excellent silent functioning. Compared to traditional units, equipped with Screw compressors, TURBOLINE units have low operational costs during their entire operating period, even lower than 50%. Besides, the units are equipped with a WEB MONITORING system for the monitoring and remote management of the units through the GPRS/EDGE/3G/TCP-IP communication protocol. Users enabled to the use of this service can, by a dedicated Web page, have access to the Monitoring, Managing and Statistics activities.

Are available as option the new EC Inverter fans with high available static pressure and efficiency.

The units are compliant to the ErP 2021 Regulation.

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Semi-hermetic centrifugal compressors with dual Turbocor turbine, oil free, magnetic rising rotor, thermal protection, continuous capacity adjustment system thanks to built-in INVERTER, automatic anti-cavitation system. The power circuit of the compressor is fitted with a set of electrolytic condensers to control the rising in the event of a power failure, reactor for the power factor correction, EMI filter for electromagnetic compatibility.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tube and aluminum finned coils or aluminium MICROCHANNEL coils.
- High efficiency flooded shell and tube type evaporator, with one or two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on suction, discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- HFO-R1234ze refrigerant.
- Electrical board includes: main on-off switch with door lock, fuses, electronic/digital overload device to protect the compressors and thermo-contacts for fans, interface relay and terminals for external connections.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, high and low pressure transducers on cooling circuit and an electrical heater on electrical board.
- TURBOSOFT control and regulation system is fitted with RS485 serial interface and Web Monitoring device for remote monitoring via GPRS/EDGE/3G/TCP-IP network.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers

EC EC Inverter fans

ECH EC Inverter fans with high available static pressure

HR Desuperheater

HRT/S Total heat recovery in series HRT/P Total heat recovery in parallel Coil with pre-coated fins TX TXB Coil with epoxy treatment

External water connections FW PU Single circulating pump

PD Double circulating pump

FΕ Antifreeze heater for evaporator FX Antifreeze heater for evaporator and pipes

FΖ Antifreeze heater for evaporator, single pump and pipes

Antifreeze heater for evaporator, FΗ double pump and pipes

TS Touch screen Interface

IST Modbus TCP/IP protocol, Ethernet port

ISB BACnet MSTP protocol, RS485 serial interface

ISBT BACnet TCP/IP protocol, Ethernet port LonWorks protocol, FTT-10 serial ISL

interface ISS SNMP protocol, Ethernet port

IAV Remote set-point, 0-10 V signal IAA Remote set-point, 4-20 mA signal IAS Remote signal for second set-point activation

IDL Demand limit from digital input

CP Potential free contacts

LOOSE ACCESSORIES:

MNHigh and low pressure gauges

CR Remote control panel

RP Coils protection metallic guards

FΡ Coils protection metallic guards with filter

AG Rubber shock absorbers ΑM Spring shock absorbers

FL Flow switch

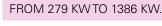
TECHNIC	AL DATA -TWA 28	1÷143	2TT/ŀ	1								
MODEL			281	361	561	721	831	1071	1431	562	722	1432
O 1: OTD	Cooling capacity (1)	kW	262	335	524	670	777	1000	1340	524	670	1340
Cooling STD version	Absorbed power (1)	kW	76	94	154	191	228	280	377	154	193	381
version	EER (1)		3.45	3.56	3.40	3.51	3.41	3.57	3.55	3.40	3.51	3.55
	Cooling capacity (1)	kW	261	334	522	668	774	997	1336	523	668	1335
O 1: OTD	Absorbed power (1)	kW	77	95	156	193	231	283	381	155	195	386
Cooling STD version (EN14511)	EER (1)		3.39	3.52	3.35	3.46	3.35	3.52	3.51	3.37	3.46	3.51
VEISIOIT (LIVI4311)	SEER (2)		5.50	5.73	5.52	5.70	5.60	5.88	5.86	5.52	5.70	5.59
	Energy Efficiency (2)	%	217	226	218	225	221	232	232	218	225	221
Carlina MC	Cooling capacity (1)	kW	262	335	524	670	777	1000	1340	524	670	1340
Cooling MC version	Absorbed power (1)	kW	72	89	145	181	216	264	356	145	183	360
VELZIOLI	EER		3.64	3.76	3.59	3.70	3.60	3.79	3.76	3.59	3.70	3.76
	Cooling capacity (1)	kW	259	334	518	668	774	997	1336	519	668	1335
0 1: 140	Absorbed power (1)	kW	73	90	147	183	219	267	360	146	185	365
Cooling MC version (EN14511)	EER (1)		3.55	3.71	3.52	3.65	3.53	3.73	3.71	3.55	3.65	3.71
VEISIOIT (LIV14511)	SEER (2)		5.55	5.79	5.58	5.76	5.65	5.94	5.93	5.58	5.76	5.65
	Energy Efficiency (2)	%	219	229	220	227	223	235	234	220	227	223
	Quantity	n°	1	1	2	2	3	3	4	2	2	4
Compressor	Refrigerant circuits	n°	1	1	1	1	1	1	1	2	2	2
	Capacity steps	n°					Step	oless				·
	Water flow	l/s	12.52	16.01	25.04	32.01	37.12	47.78	64.02	25.04	32.01	64.02
Evaporator	Pressure drops	kPa	40	47	47	50	40	43	32	47	50	32
	Water connections	DN	100	100	125	125	150	150	150	125	125	150
Floorisal	Power supply	V/Ph/Hz					400,	/3/50	,			·
Electrical characteristics	Max. running current	А	173	173	339	347	505	520	678	339	347	678
Characteristics	Max. starting current	А	25	25	191	199	357	372	530	191	199	530
Unit with pump	Pump available static pressure	kPa	140	120	110	125	105	120	145	110	125	145
Offic With pump	Water connections	DN	100	100	150	150	150	150	200	150	150	200
Cound processes	STD version (3)	dB(A)	70	70	71	71	71	71	72	71	71	72
Sound pressure	MC version (3)	dB(A)	69	69	70	70	70	70	71	70	70	71
Weights	Transport weight	Kg	2610	3000	4050	4460	6050	6820	8100	4290	4700	8400
vveignis	Operating weight	Kg	2670	3070	4150	4580	6210	7010	8400	4390	4820	8700

\Box	A - N	NS
	$\mathbf{v} = \mathbf{v}$	

MODEL			281	361	561	721	831	1071	1431	562	722	1432
L	STD/MC	mm	4000	5000	6200	7200	8400	10050	11700	6200	7200	11700
W	STD/MC	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	STD/MC	mm	2100	2100	2100	2100	2500	2500	2500	2100	2100	2500

TWA 281÷1432 TT/H

500 | 1800 | 1000 | 1800



- Chilled water from 12 to 7 °C, ambient air temperature 35 °C. Seasonal energy efficiency of cooling at low temperature. According to EU 2.
- Seasonal energy emicency of cooling at low temperature. According to Eo Regulation n. 2016/2281.
 Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
 N.B. Data of MC version are specified on technical brochure.

VERSION

TWA/FC

Cooling only

TWA/FC 281÷1432 TT/H

AIRCOOLED LIQUID CHILLERS FREE-COOLING WITH AXIAL FANS, TURBOCOR (MAGNETIC LEVITATION) COMPRESSORS AND FLOODED SHELL AND TUBE EXCHANGER.

The innovative TWA/FC 281 ÷ 1432 TT/H TURBOLINE units, with HFO-R1234ze refrigerant and FREE-COOLING technology, are designed to provide an effective solution to installation requirements of large areas, both commercial and industrial, where the production of chilled water is required in continuous service throughout the year. The latest generation refrigerant HFO-R1234ze, with GWP<1 (Global Warming Potential), is the most environmentally sustainable refrigerant on the market, and meets the strictest international environmental regulations. Furthermore, thanks to Turbocor compressors, the units perform with top efficiency at partial loads, low inrush currents, an excellent silent functioning and reduced weight. The unit, designed with specific attention to every aspect of construction and combined with the use of TURBOCOR dynamic partialization oilfree magnetic levitation compressors - managed by the TURBOSOFT self-adaptive electronic control - and with the use of flooded shell & tube evaporator, achieves a high rate of energy efficiency, with unequalled SEPR values, with minimum water content, and an excellent silent functioning. Depending on outside air temperature, the microprocessor controller manages the functioning in CHILLER, FREE-COOLING or MIXED (both CHILLER and FREE-COOLING) mode. The units are also equipped with a WEB MONITORING system for the monitoring and remote management of the units through the communication protocol GPRS/EDGE/3G/TCP-IP. Users enabled to the use of this service can, by a dedicated Web page, have access to the Monitoring, Managing and Statistics activities. Are available as option the new EC Inverter fans with high available static pressure and efficiency.

The units are compliant to the ErP 2021 Regulation for process cooling application.

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Semi-hermetic centrifugal compressors with dual Turbocor turbine, oil free, magnetic rising rotor, thermal protection, continuous capacity adjustment system thanks to built-in INVERTER, automatic anti-cavitation system. The power circuit of the compressor is fitted with a set of electrolytic condensers to control the rising in the event of a power failure, reactor for the power factor correction, EMI filter for electromagnetic compatibility.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tubes and aluminium finned coils combined with FREE-COOLING coils.
- High efficiency flooded shell and tube type evaporator, with one or two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on suction, discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- HFO-R1234ze refrigerant.
- Electrical board includes: main on-off switch with door lock, fuses, electronic/digital overload device to protect the compressors and thermo-contacts for fans, interface relay and terminals for external connections.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, high and low pressure transducers on cooling circuit and an electrical heater on electrical board.
- TURBOSOFT control and regulation system is fitted with RS485 serial interface and Web Monitoring device for remote monitoring via GPRS/EDGE/3G/TCP-IP network.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

Automatic circuit breakers IM

FC EC Inverter fans

EC Inverter fans with high available **FCH**

static pressure

HRT/P Total heat recovery in parallel

ΤX Coil with pre-coated fins

PU Single circulating pump

PD Double circulating pump

TS Touch screen Interface IST Modbus TCP/IP protocol, Ethernet port

BACnet MSTP protocol, RS485 serial

interface

ISB

ISBT BACnet TCP/IP protocol, Ethernet port

ISL LonWorks protocol, FTT-10 serial

interface

ISS SNMP protocol, Ethernet port

IAV/ Remote set-point, 0-10 V signal

IAA Remote set-point, 4-20 mA signal

IAS Remote signal for second set-point activation

IDL Demand limit from digital input CP

Potential free contacts

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel

RP Coils protection metallic guards

ΔG Rubber shock absorbers ΑM Spring shock absorbers

FL Flow switch

MODEL			281	361	561	721	831	1071	1431	562	722	1432
	Cooling capacity (1)	kW	279	348	554	698	837	1040	1386	554	698	1386
Cooling	Absorbed power (1)	kW	75	95	160	193	242	283	387	160	193	387
	EER (1)		3.72	3.66	3.46	3.62	3.46	3.67	3.58	3.46	3.62	3.58
	Cooling capacity (1)	kW	277	345	551	694	831	1031	1366	551	694	1366
Cooling	Absorbed power (1)	kW	77	98	163	198	248	292	407	163	198	407
(EN14511)	EER (1)		3.60	3.52	3.38	3.51	3.35	3.53	3.36	3.38	3.51	3.36
	SEPR (2)		7.35	7.30	7.13	7.25	7.42	7.43	7.43	7.13	7.25	7.45
Free-Cooling	Air temperature (3)	°C	3.0	2.5	1.5	-1.0	0.0	0.5	-1.0	1.5	-1.0	-1.0
cycle	Absorbed power (3)	kW	10.8	14.4	21.6	21.6	25.2	32.4	36.0	21.6	21.6	36.0
	Quantity	n°	1	1	2	2	3	3	4	2	2	4
Compressor	Refrigerant circuits	n°	1	1	1	1	1	1	1	2	2	2
	Capacity steps	n°					Step	less				
	Water flow	l/s	14.42	17.98	28.63	36.07	43.26	53.75	71.63	28.63	36.07	71.63
Water circuit	Pressure drops	kPa	88	103	78	94	101	142	253	78	94	253
	Water connections	DN	100	100	125	125	150	150	150	125	125	150
Florence	Power supply	V/Ph/Hz					400/	3/50	,			
Electrical characteristics	Max. running current	Α	173	181	347	347	505	520	678	347	347	678
Characteristics	Max. starting current	Α	25	33	199	199	357	372	530	199	199	530
Unit with pump	Pump available static pressure	kPa	140	125	110	180	150	150	160	110	180	160
Onit with pump	Water connections	DN	100	100	150	150	150	150	200	150	150	200
Sound pressure (4)	dB(A)	69	70	71	71	71	71	72	71	71	72
\A/aialata	Transport weight	Kg	3620	3730	5560	5640	7890	8910	10800	5740	5820	11000
Weights	Operating weight	Kg	3900	4030	6040	6160	8610	9810	11840	6220	6340	12040

אוח	$I \subseteq N$	ISIO	אוכ
אווע		SIU	כעוי

MODEL			281	361	561	721	831	1071	1431	562	722	1432
L	STD	mm	5000	5000	7200	7200	8400	10050	11700	7200	7200	11700
W	STD	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	STD	mm	2360	2360	2360	2360	2750	2750	2750	2360	2360	2750

TWA/FC 281÷1432 TT/H 500 | 1800 | 1000 | 1800

- 1. Chilled water (with ethylene glycol at 30%) from 15 to 10 °C, ambient air temperature 35 °C.
- Seasonal energy efficiency of process cooling at high temperature. According to EU Regulation n. 2016/2281.
- Ambient air temperature at wich the cooling capacity indicated in point (1) is reached.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.

TWA 251÷1502 TT/Y

A CLASS ENERGY EFFICIENCY AIRCOOLED LIQUID CHILLERS WITH AXIAL FANS, TURBOCOR (MAGNETIC LEVITATION) COMPRESSORS AND FLOODED SHELL AND TUBE EXCHANGER.

The innovative TWA 251÷1502 TT/Y TURBOLINE units, with R134a refrigerant, are designed to provide an effective solution to highly selective system needs. Efficiency at partial loads, low inrush currents, an excellent silent functioning, reduced weight and the specific design and handling of every manufacturing aspect make the TURBOLINE series the top unit of the range.

The use of TURBOCOR dynamic partial-load oil-free magnetic levitation compressors managed by the TURBOSOFT self-adaptive electronic control, of flooded shell & tube evaporator and innovative heat exchangers, traditional or Microchannel, results in a high energy efficiency with unequalled SEER values, with minimum water content, and an excellent silent functioning. Compared to traditional units, equipped with Screw compressors, TURBOLINE units have low operational costs during their entire operating period, even lower than 50%. Besides, the units are equipped with a WEB MONITORING system for the monitoring and remote management of the units through the GPRS/EDGE/3G/TCP-IP communication protocol. Users enabled to the use of this service can, by a dedicated Web page, have access to Monitoring, Managing and Statistics activities.

Are available as option the new EC Inverter fans with high available static pressure and efficiency.

The units are compliant to the ErP 2021 Regulation.

On request, units can be supplied with R513A refrigerant (TWA 251÷1502 TT/J).

FROM 248 KW TO 1456 KW.

VERSION

TWA

Cooling only

TWA/MC

Cooling only with MICROCHANNEL coils

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Semi-hermetic centrifugal compressors with dual Turbocor turbine, oil free, magnetic rising rotor, thermal protection, continuous capacity adjustment system thanks to built-in INVERTER, automatic anti-cavitation system. The power circuit of the compressor is fitted with a set of electrolytic condensers to control the rising in the event of a power failure, reactor for the power factor correction, EMI filter for electromagnetic compatibility.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tube and aluminum finned coils or aluminium MICROCHANNEL coils.
- High efficiency flooded shell and tube type evaporator, with one or two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on suction, discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R134a refrigerant. On request R513A refrigerant.
- Electrical board includes: main on-off switch with door lock, fuses, electronic/digital overload device to protect the compressors and thermo-contacts for fans, interface relay and terminals for external connections.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, high and low pressure transducers on cooling circuit and an electrical heater on electrical board.
- TURBOSOFT control and regulation system is fitted with RS485 serial interface and Web Monitoring device for remote monitoring via GPRS/EDGE/3G/TCP-IP network.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers

EC EC Inverter fans

ECH EC Inverter fans with high available

static pressure HR Desuperheater

HRT/S Total heat recovery in series HRT/P Total heat recovery in parallel

Coil with pre-coated fins TX TXB Coil with epoxy treatment

ΕW External water connections ΡU Single circulating pump

PD Double circulating pump FΕ Antifreeze heater for evaporator

FΧ Antifreeze heater for evaporator and

FΖ Antifreeze heater for evaporator, single pump and pipes

FΗ Antifreeze heater for evaporator, double pump and pipes

TS Touch screen Interface

IST Modbus TCP/IP protocol, Ethernet port

BACnet MSTP protocol, RS485 serial ISB interface

ISBT BACnet TCP/IP protocol, Ethernet port

ISL LonWorks protocol, FTT-10 serial interface

ISS SNMP protocol, Ethernet port IAV Remote set-point, 0-10 V signal IAA Remote set-point, 4-20 mA signal

IAS Remote signal for second set-point activation

IDL Demand limit from digital input

CP Potential free contacts

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel

RP Coils protection metallic guards

FΡ Coils protection metallic guards with filter

AG Rubber shock absorbers ΑM Spring shock absorbers

FL Flow switch

TECHNICA	AL DATA -TWA 251	÷1502	TT/Y								
MODEL			251	291	341	411	521	641	801	981	1101
Cooling STD	Cooling capacity (1)	kW	248	282	335	403	509	627	770	929	1075
version	Absorbed power (1)	kW	73	81	97	116	145	185	221	274	311
VC131011	EER (1)		3.40	3.48	3.45	3.47	3.51	3.39	3.48	3.39	3.46
	Cooling capacity (1)	kW	247	281	334	402	507	624	767	925	1072
Cooling STD	Absorbed power (1)	kW	74	82	98	117	147	188	224	278	315
version (EN14511)	EER (1)		3.32	3.43	3.40	3.42	3.46	3.33	3.43	3.32	3.41
VOIDION (EIVI 1011)	SEER (2)		4.88	5.06	5.07	5.18	5.14	5.16	5.34	5.29	5.36
	Energy Efficiency (2)	%	192	199	200	204	203	203	211	209	211
Cooling MC	Cooling capacity (1)	kW	248	282	335	403	509	627	770	929	1075
version	Absorbed power (1)	kW	64	73	86	106	132	163	198	243	281
*0101011	EER		3.88	3.86	3.90	3.80	3.86	3.85	3.89	3.82	3.83
	Cooling capacity (1)	kW	248	282	335	403	509	627	770	929	1075
Cooling MC	Absorbed power (1)	kW	64	73	86	106	132	163	198	243	281
version (EN14511)	EER (1)		3.88	3.86	3.90	3.80	3.86	3.85	3.89	3.82	3.83
	SEER (2)		4.93	5.11	5.12	5.23	5.19	5.22	5.40	5.34	5.41
	Energy Efficiency (2)	%	194	201	202	206	205	206	213	211	213
	Quantity	n°	1	1	1	1	2	2	2	2	3
Compressor	Refrigerant circuits	n°	1	1	1	1	1	1	1	1	1
	Capacity steps	n°					Stepless				
_	Water flow	l/s	11.85	13.47	16.01	19.25	24.32	29.96	36.79	44.39	51.36
Evaporator	Pressure drops	kPa	64	40	40	35	44	56	46	68	46
	Water connections	DN	100	100	100	125	125	150	150	150	150
Electrical	Power supply	V/Ph/Hz					400/3/50				
characteristics	Max. running current	Α	168	168	168	262	329	337	509	517	763
	Max. starting current	Α	25	25	25	33	186	194	280	288	534
Unit with pump	Pump available static pressure	kPa	150	200	195	165	175	145	155	120	170
ome with pamp	Water connections	DN	100	100	100	125	125	150	150	150	150
Sound pressure	STD version (3)	dB(A)	69	69	69	69	70	70	70	69	70
	MC version (3)	dB(A)	68	68	68	68	69	69	69	68	69
Weights	Transport weight	Kg	2440	2440	2770	2790	3685	4020	4055	5710	6460
3	Operating weight	Kg	2510	2510	2900	2920	3825	4170	4225	5910	6680
MODEL			1291	1501	522	642	802	982	1102	1292	1502
	Cooling capacity (1)	kW	1260	1456	509	627	770	929	1075	1260	1456
Cooling STD	Absorbed power (1)	kW	362	433	145	185	221	274	309	362	433
version	EER (1)	NVV	3.48	3.36	3.51	3.39	3.48	3.39	3.48	3.48	3.36
	Cooling capacity (1)	kW	1256	1450	507	624	767	925	1072	1256	1450
	Absorbed power (1)	kW	366	439	147	188	224	278	312	366	439
Cooling STD	EER (1)	NVV	3.43	3.31	3.46	3.33	3.43	3.32	3.43	3.43	3.31
version (EN14511)	SEER (2)		5.40	5.25	5.14	5.16	5.34	5.29	5.36	5.40	5.25
	Energy Efficiency (2)	%	213	207	203	203	211	209	211	213	207
	Cooling capacity (1)	kW	1260	1456	509	627	770	929	1075	1260	1456
Cooling MC	Absorbed power (1)	kW	328	381	132	163	198	243	279	328	381
version	EER	INV V	3.84	3.82	3.86	3.85	3.89	3.82	3.85	3.84	3.82
	Cooling capacity (1)	kW	1260	1456	509	627	770	929	1075	1260	1456
	Absorbed power (1)	kW	328	381	132	163	198	243	279	328	381
Cooling MC	EED (1)	IN V	3.84	3.82	3.86	3.85	3.89	3.82	3.85	3.84	3.82
version (EN14511)	SEER (2)		5.46	5.31	5.19	5.22	5.40	5.34	5.41	5.46	5.31
	Energy Efficiency (2)	%	215	209	205	206	213	211	213	215	209
	0 111	_			_	_	_	_		4	
Compressor	Refrigerant circuits	n° n°	1	1	2	2	2	2	2	2	2
COMPLESSOR	Capacity steps	n°		1			Stepless				
	Water flow	l/s	60.20	69.56	24.32	29.96	36.79	44.39	51.36	60.20	69.56
Evaporator	Pressure drops	kPa	50	59	44	29.96	36.79	68	41	50	59
Evaporator	Water connections	DN	200	200	125	150	150	150	150	200	200
		V/Ph/Hz	200	200	120	100	400/3/50	100	100	200	200
		1 1/1/11/11/11/11/11/11/11/11/11/11/11/1	I			207	509		0.50		1000
Electrical	Power supply		GEO.	1000							
Electrical characteristics	Max. running current	А	658	1002	329	337		517	650	658	1002
	Max. running current Max. starting current	A	515	773	186	194	280	288	507	515	773
	Max. running current Max. starting current Pump available static pressure	A A kPa	515 220	773 185	186 175	194 145	280 155	288 120	507 170	515 220	773 185
characteristics	Max. running current Max. starting current Pump available static pressure Water connections	A A kPa DN	515 220 200	773 185 200	186 175 125	194 145 150	280 155 150	288 120 150	507 170 150	515 220 200	773 185 200
characteristics	Max. running current Max. starting current Pump available static pressure Water connections STD version (3)	A A kPa DN dB(A)	515 220 200 71	773 185 200 71	186 175 125 70	194 145 150 70	280 155 150 70	288 120 150 69	507 170 150 70	515 220 200 71	773 185 200 71
characteristics Unit with pump	Max. running current Max. starting current Pump available static pressure Water connections STD version (3) MC version (3)	A A kPa DN dB(A) dB(A)	515 220 200 71 70	773 185 200 71 70	186 175 125 70 69	194 145 150 70 69	280 155 150 70 69	288 120 150 69 68	507 170 150 70 69	515 220 200 71 70	773 185 200 71 70
Unit with pump	Max. running current Max. starting current Pump available static pressure Water connections STD version (3)	A A kPa DN dB(A)	515 220 200 71	773 185 200 71	186 175 125 70	194 145 150 70	280 155 150 70	288 120 150 69	507 170 150 70	515 220 200 71	773 185 200 71

N /		\circ	\bigcirc	\sim
 - 1 A 1 -	_ ~			VI S
				NS

Operating weight

MODEL			251	291	341	411	521	641	801	981	1101	1291	1501	522	642	802	982	1102	1292	1502
L	STD/MC	mm	4000	4000	5000	5000	6200	7200	7200	8400	10050	11100	11100	6200	7200	7200	8400	10050	11100	11100
W	STD/MC	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	STD/MC	mm	2100	2100	2100	2100	2100	2100	2100	2500	2500	2500	2500	2100	2100	2100	2500	2500	2500	2500

7880

3845

4405

4445

6030

6915

7805

8095

CLEARANCE AREA

500 | 1800 | 1000 | 1800

Kg

7660

- Chilled water from 12 to 7 °C, ambient air temperature 35 °C. Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.

 Sound pressure level measured in free field conditions at 1 m from the unit. 1. 2.
- According to ISO 3744.

 N.B. Data of MC version are specified on technical brochure.

TWA/FC 251÷1502 TT/Y

AIRCOOLED LIQUID CHILLERS FREE-COOLING WITH AXIAL FANS, TURBOCOR (MAGNETIC LEVITATION) COMPRESSORS AND FLOODED SHELL AND TUBE EXCHANGER.

The innovative TWA/FC 251 \div 1502 TT/Y **TURBOLINE** units, with R134a refrigerant and FREE-COOLING technology, are designed to provide an effective solution to installation requirements of large areas, both commercial and industrial, where the production of chilled water is required in continuous service throughout the year. The unit, designed with specific attention to every aspect of construction and combined with the use of TURBOCOR dynamic partialization oil-free magnetic levitation compressors - managed by the TURBOSOFT self-adaptive electronic control - and with the use of flooded shell & tube evaporator, achieves a high rate of energy efficiency, with unequalled SEPR values, with minimum water content, and an excellent silent functioning. Depending on outside air temperature, the microprocessor controller manages the functioning in CHILLER, FREE-COOLING or MIXED (both CHILLER and FREE-COOLING) mode. The units are also equipped with a WEB MONITORING system for the monitoring and remote management of the units through the communication protocol GPRS/EDGE/3G/TCP-IP. Users enabled to the use of this service can, by a dedicated Web page, have access to the Monitoring, Managing and Statistics activities.

Are available as option the new EC Inverter fans with high available static pressure and efficiency.

The units are compliant to the ErP 2021 Regulation for process cooling application.

On request, units can be supplied with R513A refrigerant (TWA/FC 251÷1502TT/J).

FROM 246 KW TO 1443 KW.

TURBOLINE

VERSION

TWA/FC

Cooling only

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Semi-hermetic centrifugal compressors with dual Turbocor turbine, oil free, magnetic rising rotor, thermal protection, continuous capacity adjustment system thanks to built-in INVERTER, automatic anti-cavitation system. The power circuit of the compressor is fitted with a set of electrolytic condensers to control the rising in the event of a power failure, reactor for the power factor correction, EMI filter for electromagnetic compatibility.
- Axial fans directly coupled to an electric motor with external rotor.
- Condenser made of copper tubes and aluminium finned coils combined with FREE-COOLING coils.
- High efficiency flooded shell and tube type evaporator, with one or two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on suction, discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R134a refrigerant. On request R513A refrigerant.
- Electrical board includes: main on-off switch with door lock, fuses, electronic/digital overload device to protect the compressors and thermo-contacts for fans, interface relay and terminals for external connections.
- Condensing Control is included: electronic proportional device that ensures efficient and continuous functioning of the unit with outside air temperature down to -20 °C. It also allows to reduce the sound level especially at night. It consists of a fans speed controller with continuous speed regulation, high and low pressure transducers on cooling circuit and an electrical heater on electrical board.
- TURBOSOFT control and regulation system is fitted with RS485 serial interface and Web Monitoring device for remote monitoring via GPRS/EDGE/3G/TCP-IP network.

IDL

ACCESSORIES

FACTORY FITTED ACCESSORIES:

INA Automatic circuit breakers

EC EC Inverter fans

ECH EC Inverter fans with high available

static pressure

HRT/P Total heat recovery in parallel TX Coil with pre-coated fins

ΡU Single circulating pump PD Double circulating pump

TS Touch screen Interface **IST** Modbus TCP/IP protocol, Ethernet port

ISB BACnet MSTP protocol, RS485 serial interface

ISBT BACnet TCP/IP protocol, Ethernet port

LonWorks protocol, FTT-10 serial ISL interface

ISS SNMP protocol, Ethernet port IAV Remote set-point, 0-10 V signal IAA Remote set-point, 4-20 mA signal IAS Remote signal for second set-point

activation

CP Potential free contacts

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel

RP Coils protection metallic guards

Demand limit from digital input

AG Rubber shock absorbers ΑM Spring shock absorbers

FL Flow switch

TECHNIC	AL DATA -TWA/FC	251÷	1502T	T/Y							
MODEL			251	291	341	411	521	641	801	981	1101
	Cooling capacity (1)	kW	246	281	333	400	495	588	696	869	1046
Coolina	Absorbed power (1)	kW	71	80	94	116	143	171	204	257	307
3	EER (1)		3.46	3.51	3.54	3.45	3.46	3.44	3.41	3.38	3.41
	Cooling capacity (1)	kW	244	279	331	397	491	582	690	861	1033
Cooling	Absorbed power (1)	kW	73	82	96	119	147	177	210	265	321
(EN14511)	EER (1)		3.34	3.40	3.45	3.34	3.34	3.29	3.29	3.25	3.22
,	SEPR (2)		7.29	7.38	7.07	7.02	7.40	7.19	7.04	7.23	7.04
Free-Cooling	Air temperature (3)	°C	-2.5	0.5	-2.9	0.0	-2.8	-2.3	-0.5	-0.2	1.0
cycle	Absorbed power (3)	kW	10.8	10.8	10.8	14.4	18.0	21.6	21.6	25.2	32.4
0,0.0	Quantity	n°	1	1	1	1	2	2	2	2	3
Compressor	Refrigerant circuits	n°	1	1	1	1	1	1	1	1	1
Compressor	Capacity steps	n°	'	'	'	'	Stepless	1	'	'	'
	Water flow	I/s	12.69	14.50	17.18	20.64	25.54	30.34	35.91	44.84	53.97
Water circuit	Pressure drops	kPa	92	97	88	105	115	155	125	144	220
vvater circuit	Water connections	DN	100	100	100		-				
		V/Ph/Hz	100	100	100	125	125 400/3/50	150	150	150	150
Electrical	Power supply	V/PII/H2	168	100	168	000		207	509	F17	763
characteristics	Max. running current			168		262	329	337		517	
	Max. starting current	A	25	25	25	33	186	194	280	288	534
Jnit with pump	Pump available static pressure	kPa	135	125	115	110	150	140	155	105	160
	Water connections	DN	100	100	100	125	125	150	150	150	150
Sound pressure (Ť	dB(A)	68	68	69	69	69	70	70	69	70
Weights	Transport weight	Kg	3040	3200	3600	3700	4620	5150	5500	7700	8800
0	Operating weight	Kg	3180	3360	3810	3930	4850	5400	5810	8080	9250
MODEL			1291	1501	522	642	802	982	1102	1292	1502
	Cooling capacity (1)	kW	1229	1443	495	588	696	869	981	1229	1443
Cooling	Absorbed power (1)	kW	357	425	143	171	204	257	280	357	425
· ·	EER (1)		3.44	3.40	3.46	3.44	3.41	3.38	3.50	3.44	3.40
	Cooling capacity (1)	kW	1211	1421	491	582	690	861	970	1211	1421
Cooling	Absorbed power (1)	kW	375	447	147	177	210	265	291	375	447
(EN14511)	EER (1)		3.23	3.18	3.34	3.29	3.29	3.25	3.33	3.23	3.18
	SEPR (2)		7.23	7.22	7.40	7.19	7.04	7.23	7.04	7.23	7.22
Free-Cooling	Air temperature (3)	°C	1.0	1.0	-2.8	-2.3	-0.5	-0.2	1.5	1.0	1.0
cycle	Absorbed power (3)	kW	36.0	36.0	18.0	21.6	21.6	25.2	32.4	36.0	36.0
,	Quantity	n°	4	4	2	2	2	2	4	4	4
Compressor	Refrigerant circuits	n°	1	1	2	2	2	2	2	2	2
Sompressor	Capacity steps	n°		'			Stepless				
	Water flow	I/s	63.42	74.46	25.54	30.34	35.91	44.84	50.62	63.42	74.46
Nater circuit	Pressure drops	kPa	256	275	115	155	125	144	188	256	275
vater circuit	Water connections	DN	200	200	125	150	150	150	150	200	200
		V/Ph/Hz	200	200	120	150	400/3/50	150	100	200	
Electrical	Power supply May rupping ourrent		GEO.	1000	329	227		E17	GEO	GEO	1000
characteristics	Max. running current	A	658	1002		337	509	517	650	658	1002
	Max. starting current	A	515	773	186	194	280	288	507	515	773
Jnit with pump	Pump available static pressure	kPa	205	145	150	140	155	105	200	205	145
<u> </u>	Water connections	DN	200	200	125	150	150	150	150	200	200
Sound pressure (dB(A)	70	70	69	70	70	69	70	71	71
Weights	Transport weight	Kg	10000	10300	4700	5400	5700	7800	9100	10200	10500
	Operating weight	Kg	10480	10790	4930	5650	6010	8180	9550	10680	10990

DIV	I - I	VIC.
	I = N	111.5

MODEL			251	291	341	411	521	641	801	981	1101	1291	1501	522	642	802	982	1102	1292	1502
L	STD	mm	4000	4000	5000	5000	6200	7200	7200	8400	10050	11100	11100	6200	7200	7200	8400	10050	11100	11100
W	STD	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	STD	mm	2360	2360	2360	2360	2360	2360	2360	2750	2750	2750	2750	2360	2360	2360	2750	2750	2750	2750

CLEARANCE AREA

TWA/FC 251÷1502 TT/Y 500 | 1800 | 1000 | 1800

- 1. Chilled water (with ethylene glycol at 30%) from 15 to 10 °C, ambient air temperature 35 °C.
- 2. Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- 3. Ambient air temperature at wich the cooling capacity indicated in point (1) is reached.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744. 4.

TWH 212+342 S/K/P

WATERCOOLED LIQUID CHILLERS AND HEAT PUMPS WITH SCROLL COMPRESSORS AND PLATE EXCHANGERS.

The TWH 212÷342 S/K/P series liquid Chillers and Heat Pumps, with R410A refrigerant, are designed for medium and large domestic or industrial systems which require medium-high power, spacesaving units and quiet operation. These units are ideal for indoor installation and, equipped with a self contained structure, they reduce the overall dimensions to a minimum while at the same time making installation and maintenance operations easier.

The units are characterized by multi-compressor design on double cooling circuit, to reach high energy performances, reduction of current at start-up, elimination of inertial tanks and excellent silent functioning. The use of components built in large series makes them highly reliable and the management of an high number of compressors allows increased life span with reduction of machine stopping risks and easier maintenance operations. A wide range of accessories, factory fitted or supplied separately, complete the outstanding versatility and functionality of the series.

The units are compliant to the ErP Regulation.

On request, units can be supplied with R452B (TWH 212+342 S/G/P) or R454B (TWH 212+342 S/L/P) refrigerant.

FROM 224 KW TO 383 KW.

VERSION

TWH

Cooling only

TWH/WP

Reversible Heat Pump

TWH/SSL

Super silenced cooling only

TWH/WP/SSL

Super silenced reversible Heat Pump

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Condenser AISI 316 stainless steel braze welded plates type with two independent circuits on the refrigerant side and one on the water side.
- Evaporator AISI 316 stainless steel braze welded plates type with two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valve on liquid line in 302÷342
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R410A refrigerant. On request R452B or R454B refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors, interface relay and terminals for external connections.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers

SI Unit silencement

RFM Cooling circuit shut-off valve on

discharge line

RFL Cooling circuit shut-off valve on

liquid line

BT Low water temperature kit

DS Desuperheater

RT Total heat recovery

FE Antifreeze heater for evaporator

SS Soft start IS Modbus RTU protocol, RS485 serial interface

IST Modbus TCP/IP protocol. Ethernet port

BACnet MSTP protocol, RS485 serial ISB interface

ISBT BACnet TCP/IP protocol, Ethernet port

ISL LonWorks protocol, FTT-10 serial interface

ISS SNMP protocol, Ethernet port

IAV Remote set-point, 0-10 V signal

IAA Remote set-point, 4-20 mA signal IAS Remote signal for second set-point

activation

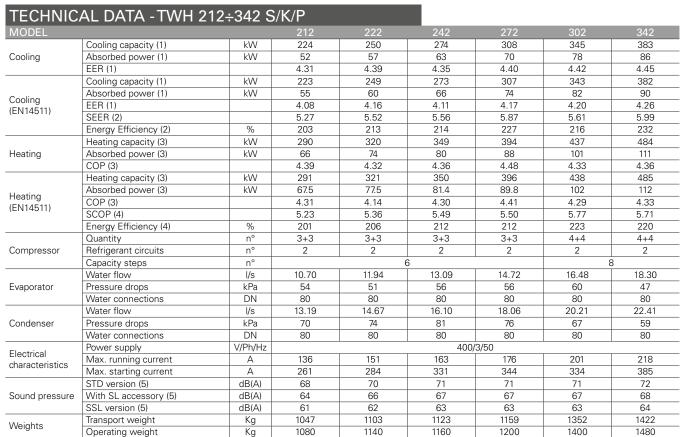
IDL Demand limit from digital input

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel

PV2 2-Way electronic pressostatic valve


PV3 3-Way electronic pressostatic valve

AG Rubber shock absorbers

ΑM Spring shock absorbers

DIMENSIONS

MODEL			212	222	242	272	302	342
L	STD/SSL	mm	2500	2500	2500	2500	3000	3000
W	STD/SSL	mm	800	800	800	800	800	800
Н	STD/SSL	mm	1900	1900	1900	1900	1900	1900

CLEARANCE AREA

TWH 212÷ 342 S/K/P

500 500 800 500

- 1. Chilled water from 12 to 7 °C, water temperature at the condenser from 30 to 35 °C.
- Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- 3. Heated water from 40 to 45 $^{\circ}$ C, water temperature at the evaporator from 15 to 10 $^{\circ}$ C.
- Seasonal energy efficiency of heating at low temperature with average climatic conditions. According to EU Regulation n. 813/2013.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of SSL and WP versions are specified on technical brochure.

TWH 212+342 S/K

WATERCOOLED LIQUID CHILLERS AND HEAT PUMPS WITH SCROLL COMPRESSORS AND SHELL AND TUBE EXCHANGERS.

The TWH 212÷342 S/K series liquid Chillers and Heat Pumps, with R410A refrigerant, are designed for medium and large domestic or industrial systems which require medium-high power, space-saving units and quiet operation. These units are ideal for indoor installation and, equipped with a self contained structure, they reduce the overall dimensions to a minimum while at the same time making installation and maintenance operations easier.

The units are characterized by multi-compressor design on double cooling circuit, to reach high energy performances, reduction of current at start-up, elimination of inertial tanks and excellent silent functioning. The use of components built in large series makes them highly reliable and the management of an high number of compressors allows increased life span with reduction of machine stopping risks and easier maintenance operations. A wide range of accessories, factory fitted or supplied separately, complete the outstanding versatility and functionality of the series.

The units are compliant to the ErP Regulation.

On request, units can be supplied with R452B (TWH 212÷342 S/G) or R454B (TWH 212÷342 S/L) refrigerant.

FROM 225 KW TO 375 KW.

VERSION

TWH

Cooling only

TWH/WP

Reversible Heat Pump

TWH/SSL

Super silenced cooling only

TWH/WP/SSL

Super silenced reversible Heat Pump

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Shell and tube type condenser with two independent circuits on the refrigerant side and one on the water side.
- Shell and tube evaporator with two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valve on liquid line in 302÷342 models.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R410A refrigerant. On request R452B or R454B refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors, interface relay and terminals for external connections.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers

SL Unit silencement

RFM Cooling circuit shut-off valve on

discharge line

RFL Cooling circuit shut-off valve on

liquid line

BT Low water temperature kit

HR Desuperheater

HRT Total heat recovery

FE Antifreeze heater for evaporator

SS Soft start

IS Modbus RTU protocol, RS485 serial interface

IST Modbus TCP/IP protocol. Ethernet port

ISB BACnet MSTP protocol, RS485 serial interface

ISBT BACnet TCP/IP protocol, Ethernet port

ISL LonWorks protocol, FTT-10 serial interface

ISS SNMP protocol, Ethernet port

IAV Remote set-point, 0-10 V signal

IAA Remote set-point, 4-20 mA signal IAS Remote signal for second set-point

activation

IDL Demand limit from digital input

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel

PV2 2-Way electronic pressostatic valve

PV3 3-Way electronic pressostatic valve

AG Rubber shock absorbers
AM Spring shock absorbers

FL Flow switch

MODEL			212	222	242	272	302	342
	Cooling capacity (1)	kW	225	248	271	302	343	375
Cooling	Absorbed power (1)	kW	53	57	64	72	79	88
	EER (1)		4.25	4.35	4.23	4.19	4.34	4.26
	Cooling capacity (1)	kW	225	248	271	302	343	375
0 10	Absorbed power (1)	kW	53	57	64	72	79	88
Cooling EN14511)	EER (1)		4.25	4.35	4.23	4.19	4.34	4.26
EN 14511)	SEER (2)		5.31	5.52	5.52	5.67	5.58	5.81
	Energy Efficiency (2)	%	204	213	213	219	215	224
	Heating capacity (3)	kW	291	317	345	386	434	474
Heating	Absorbed power (3)	kW	67	74	81	91	102	113
-	COP (3)		4.34	4.28	4.26	4.24	4.25	4.19
	Heating capacity (3)	kW	293	319	346	387	436	476
	Absorbed power (3)	kW	69	77	83	93	105	116
Heating	COP (3)		4.25	4.14	4.17	4.16	4.15	4.10
EN14511)	SCOP (4)		4.93	5.20	5.13	4.97	5.26	5.04
	Energy Efficiency (4)	%	189	200	197	191	202	194
	Quantity	n°	3+3	3+3	3+3	3+3	4+4	4+4
Compressor	Refrigerant circuits	n°	2	2	2	2	2	2
	Capacity steps	n°			6		8	3
	Water flow	l/s	10.75	11.85	12.95	14.43	16.39	17.92
vaporator	Pressure drops	kPa	38	38	24	27	31	25
	Water connections	DN	125	125	150	150	150	150
	Water flow	l/s	13.28	14.57	16.01	17.87	20.16	22.12
Condenser	Pressure drops	kPa	31	28	31	36	35	36
	Water connections	DN	65	65	65	65	65	65
Electrical	Power supply	V/Ph/Hz			400/	3/50		
enectrical Characteristics	Max. running current	А	136	151	163	176	201	218
naracteristics	Max. starting current	А	261	284	331	344	334	385
	STD version (5)	dB(A)	70	71	71	71	72	72
ound pressure	With SL accessory (5)	dB(A)	66	67	67	67	68	68
	SSL version (5)	dB(A)	62	63	63	63	64	64
Λ/a i αlata	Transport weight	Kg	1370	1399	1544	1554	1819	2024
Neights	Operating weight	Kg	1470	1500	1680	1690	1950	2230

DIMENSIONS

MODEL			212	222	242	272	302	342
L	STD/SSL	mm	3000	3000	3000	3000	3000	3000
W	STD/SSL	mm	800	800	800	800	1350	1350
Н	STD/SSL	mm	1900	1900	1900	1900	1900	1900

CLEARANCE AREA

TWH 212÷342 S/K

500 500 800 500

- Chilled water from 12 to 7 °C, water temperature at the condenser from 30 to 35 °C. Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- Heated water from 40 to 45 °C, water temperature at the evaporator from 15 to 10 °C. Seasonal energy efficiency of heating at low temperature with average climatic conditions. According to EU Regulation n. 813/2013.

 Sound pressure level measured in free field conditions at 1 m from the unit.
- According to ISO 3744.

 N.B. Weights of SSL and WP versions are specified on technical brochure.

A CLASS ENERGY EFFICIENCY WATERCOOLED LIQUID CHILLERS WITH (INVERTER) SCREW COMPRESSORS AND SHELL AND TUBE EXCHANGERS.

The liquid Chillers of the TWH 202÷1352 W/H/A series, with A CLASS energy efficiency and HFO-R1234ze refrigerant, are designed to satisfy the needs of the service sector or industrial systems requiring high power. The latest generation refrigerant HFO-R1234ze, with GWP<1 (Global Warming Potential), is the most environmentally sustainable refrigerant on the market, and meets the strictest international environmental regulations.

Equipped with latest generation Screw compressors, shell and tube exchangers and connections for condensation with cooling tower water or well water or with a Dry-Cooler, these units have a series of accessories which are factory fitted or supplied separately. Designed and produced to optimize the layout of each component so as to make any necessary maintenance operations more convenient, these units have an essential and compact structure intended for indoor installation. Furthermore, accessories as the Inverter control on one Screw compressor or both is also available for getting the highest efficiency at part load and a significant reduction of starting current.

The models 202+312 are compliant to the ErP 2021 Regulation. The models 362+1352 are compliant to the ErP 2021 Regulation for process cooling application; for comfort cooling application they are compliant if provided with ID accessory (Inverter on all compressors).

FROM 234 KW TO 1650 KW.

VERSION

TWH

Cooling only

TWH/SSL

Super silenced cooling only

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Screw compressors with built-in oil separator, suction filter, crankcase heater, oil sight glass, thermal protection and stepless capacity steps.
- Shell and tube type condenser, with easily removable cast iron heads to enable access for maintenance operations. Each cooling circuit is supplied with an independent condenser. Water connections for cooling tower and Dry-Cooler operation; on request for well water.
- Shell and tube evaporator with two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- HFO-R1234ze refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers ВТ Low water temperature kit HR Desuperheater HRT Total heat recovery FF Antifreeze heater for evaporator Ш Inverter on one compressor and soft start ID Inverter on all compressors

SS Soft start DP Device for heat pump operation \/\/\/ Web Monitoring - Wireless remote monitoring (GPRS/EDGE/3G/TCP-IP)

IS Modbus RTU protocol, RS485 serial interface

IST Modbus TCP/IP protocol, Ethernet port ISB BACnet MSTP protocol, RS485 serial interface **ISBT** BACnet TCP/IP protocol, Ethernet port ISL LonWorks protocol, FTT-10 serial interface ISS SNMP protocol, Ethernet port IAV Remote set-point, 0-10 V signal ΙΑΑ Remote set-point, 4-20 mA signal

IAS Remote signal for second set-point activation IDL Demand limit from digital input

CP Potential free contacts

LOOSE ACCESSORIES:

MN High and low pressure gauges CR Remote control panel PV3 3-Way electronic pressostatic valve AG Rubber shock absorbers

ΑM Spring shock absorbers FL Flow switch

Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with ID accessory (2) Energy Efficiency with ID accessory (2) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Water connections Water connections Water connections	kW kW kW kW % n° n° n° l/s kPa DN	202 234 44 5.32 233 45 5.18 5.68 219 6.53 253 2	262 310 57 5.44 309 59 5.23 5.84 226 6.71 260 2	312 375 66 5.68 373 68 5.46 5.93 229 6.81 264	362 437 80 5.46 436 83 5.27 5.88 227 6.76 262	412 488 89 5.48 487 92 5.32 5.90 228 6.79 264	472 558 100 5.58 557 103 5.39 5.91 228 6.8	552 655 117 5.60 653 121 5.42 5.95 230 6.84
Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with ID accessory (2) Energy Efficiency with ID accessory (2) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water flow Pressure drops	kW kW kW % n° n° n° l/s kPa	44 5.32 233 45 5.18 5.68 219 6.53 253 2 2	57 5.44 309 59 5.23 5.84 226 6.71 260	66 5.68 373 68 5.46 5.93 229 6.81 264	80 5.46 436 83 5.27 5.88 227 6.76	89 5.48 487 92 5.32 5.90 228 6.79	100 5.58 557 103 5.39 5.91 228 6.8	117 5.60 653 121 5.42 5.95 230 6.84
EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with ID accessory (2) Energy Efficiency with ID accessory (2) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Water flow Pressure drops	kW kW % % n° n° n° l/s kPa	5.32 233 45 5.18 5.68 219 6.53 253 2 2	5.44 309 59 5.23 5.84 226 6.71 260	5.68 373 68 5.46 5.93 229 6.81 264	5.46 436 83 5.27 5.88 227 6.76	5.48 487 92 5.32 5.90 228 6.79	5.58 557 103 5.39 5.91 228 6.8	5.60 653 121 5.42 5.95 230 6.84
Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with ID accessory (2) Energy Efficiency with ID accessory (2) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Water flow Pressure drops	% % n° n° n° l/s kPa	233 45 5.18 5.68 219 6.53 253 2 2	309 59 5.23 5.84 226 6.71 260	373 68 5.46 5.93 229 6.81 264	436 83 5.27 5.88 227 6.76 262	487 92 5.32 5.90 228 6.79	557 103 5.39 5.91 228 6.8	653 121 5.42 5.95 230 6.84
Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with ID accessory (2) Energy Efficiency with ID accessory (2) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Water flow Pressure drops	% % n° n° n° l/s kPa	45 5.18 5.68 219 6.53 253 2 2	59 5.23 5.84 226 6.71 260	68 5.46 5.93 229 6.81 264	83 5.27 5.88 227 6.76 262	92 5.32 5.90 228 6.79	103 5.39 5.91 228 6.8	121 5.42 5.95 230 6.84
EER (1) SEER (2) Energy Efficiency (2) SEER with ID accessory (2) Energy Efficiency with ID accessory (2) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Water flow Pressure drops	% % n° n° n° l/s kPa	5.18 5.68 219 6.53 253 2 2	5.23 5.84 226 6.71 260	5.46 5.93 229 6.81 264	5.27 5.88 227 6.76 262	5.32 5.90 228 6.79	5.39 5.91 228 6.8	5.42 5.95 230 6.84
SEER (2) Energy Efficiency (2) SEER with ID accessory (2) Energy Efficiency with ID accessory (2) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Water flow Pressure drops	% n° n° n° l/s kPa	5.68 219 6.53 253 2 2 11.18	5.84 226 6.71 260 2	5.93 229 6.81 264	5.88 227 6.76 262	5.90 228 6.79	5.91 228 6.8	5.95 230 6.84
Energy Efficiency (2) SEER with ID accessory (2) Energy Efficiency with ID accessory (2) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Water flow Pressure drops	% n° n° n° l/s kPa	219 6.53 253 2 2 2	226 6.71 260 2	229 6.81 264 2	227 6.76 262	228 6.79	228 6.8	230 6.84
SEER with ID accessory (2) Energy Efficiency with ID accessory (2) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Water flow Pressure drops	% n° n° n° l/s kPa	6.53 253 2 2 2	6.71 260 2	6.81 264 2	6.76 262	6.79	6.8	6.84
Energy Efficiency with ID accessory (2) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Water flow Pressure drops	n° n° n° l/s kPa	253 2 2 11.18	260 2	264	262			
Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Water flow Pressure drops	n° n° l/s kPa	11.18			2	·		∠00
Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Water flow Pressure drops	n° n° l/s kPa	11.18				2	2	2
Capacity steps Water flow Pressure drops Water connections Water flow Pressure drops	n° I/s kPa	11.18			2	2	2	2
Water flow Pressure drops Water connections Water flow Pressure drops	l/s kPa				Stepless			
Pressure drops Water connections Water flow Pressure drops	kPa		14.81	17.92	20.88	23.32	26.66	31.2
Water connections Water flow Pressure drops		200	37	42	39	32	31	35
Water flow Pressure drops	ווט ן	36 125	150	150	150	200	200	200
Pressure drops	1/0	13.28	17.53	21.07	24.70	27.57	31.44	
<u>'</u>	l/s kPa	13.28	28	34	36	36	31.44	36.8
	DN	80	80	80	80	80	80	100
Power supply	V/Ph/Hz	80	80	80	400/3/50	80	80	100
Max. running current	A A	144	190	220	260	290	334	384
-								492
<u>~</u>				-				76
								70
								418
<u> </u>				-				459
Operating weight	Ng	2300	2000	2040	3100	3420	3550	455
		612	722	812	982	1062	1232	135
Cooling capacity (1)	kW	736	868	980	1160	1278	1475	1650
Absorbed power (1)	kW	131	154	174	222	242	275	304
EER (1)		5.62	5.64	5.63	5.23	5.28	5.36	5.43
Cooling capacity (1)	kW	734	866	977	1157	1274	1469	164
Absorbed power (1)	kW	135	159	180	229	250	285	314
EER (1)		5.42	5.45	5.44	5.06	5.10	5.16	5.23
SEER (2)		6.02	6.11	6.07	6.14	6.21	6.33	6.33
Energy Efficiency (2)	%	233	236	235	238	240	245	245
SEER with ID accessory (2)		6.92	7.02	6.98	7.06	7.14	7.28	7.28
Energy Efficiency with ID accessory (2)	%	269	273	271	274	278	283	283
Quantity	n°	2	2	2	2	2	2	2
Refrigerant circuits	n°	2	2	2	2	2	2	2
Capacity steps	n°				Stepless		-	-
Water flow	l/s	35.16	41.47	46.82	55.42	61.06	70.47	78.8
Pressure drops	kPa	45	39	38	39	49	57	54
Water connections	DN	200	200	250	250	250	250	250
Water flow	l/s	41.42	48.83	55.14	66.03	72.62	83.61	93.3
Pressure drops	kPa	34	37	37	37	37	35	32
Water connections	DN	100	100	100	125	125	125	150
	V/Ph/Hz		1	1	400/3/50			
Power supply		436	489					
Power supply Max. running current	A		1 400	549	701	761	873	961
Max. running current								961
12.12.12	A A dB(A)	576 77	692 78	549 782 79	701 1144 80	761 1174 80	873 1372 81	
	Max. starting current STD version (3) SSL version (3) Transport weight Operating weight Cooling capacity (1) Absorbed power (1) EER (1) Cooling capacity (1) Absorbed power (1) EER (1) SEER (2) Energy Efficiency (2) SEER with ID accessory (2) Energy Efficiency with ID accessory (2) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Water flow	Max. starting current A STD version (3) dB(A) SSL version (3) dB(A) Transport weight Kg Operating weight Kg Cooling capacity (1) kW Absorbed power (1) kW EER (1) cooling capacity (1) kW EER (1) seen with ID w SEER (2) seen with ID accessory (2) % SEER with ID accessory (2) seen with ID accessory (2) w Refrigerant circuits n° n° Capacity steps n° Water flow l/s Pressure drops kPa Water connections DN Water flow l/s N	Max. starting current A 199 STD version (3) dB(A) 76 SSL version (3) dB(A) 72 Transport weight Kg 2140 Operating weight Kg 2300 612 Cooling capacity (1) kW 736 Absorbed power (1) kW 131 EER (1) 5.62 6.62 Cooling capacity (1) kW 734 Absorbed power (1) kW 135 EER (1) 5.42 5.42 SEER (2) 6.02 6.02 Energy Efficiency (2) % 233 SEER with ID accessory (2) 6.92 6.92 Energy Efficiency with ID accessory (2) 269 2 Quantity n° 2 Refrigerant circuits n° 2 Capacity steps n° 2 Water flow l/s 35.16 Pressure drops kPa 45 Water flow l/s 41.42 </td <td>Max. starting current A 199 257 STD version (3) dB(A) 76 76 SSL version (3) dB(A) 72 72 Transport weight Kg 2140 2445 Operating weight Kg 2300 2660 612 722 Cooling capacity (1) kW 736 868 Absorbed power (1) kW 131 154 EER (1) 5.62 5.64 Cooling capacity (1) kW 734 866 Absorbed power (1) kW 135 159 EER (1) 5.42 5.45 SEER (2) 6.02 6.11 Energy Efficiency (2) % 233 236 SEER with ID accessory (2) 6.92 7.02 Energy Efficiency with ID accessory (2) 6.92 7.02 Capacity steps n° 2 2 Vater flow l/s 35.16 41.47 Pressure drops kPa 45</td> <td>Max. starting current A 199 257 318 STD version (3) dB(A) 76 76 76 SSL version (3) dB(A) 72 72 72 Transport weight Kg 2140 2445 2640 Operating weight Kg 2300 2660 2840 612 722 812 Cooling capacity (1) kW 736 868 980 Absorbed power (1) kW 131 154 174 EER (1) 5.62 5.64 5.63 Cooling capacity (1) kW 734 866 977 Absorbed power (1) kW 734 866 977 Absorbed power (1) kW 135 159 180 EER (1) 5.42 5.45 5.44 SEER (2) 6.02 6.11 6.07 Energy Efficiency (2) % 233 236 235 SEER with ID accessory (2) 6.92 7.02</td> <td>Max. starting current A 199 257 318 373 STD version (3) dB(A) 76 76 76 76 SSL version (3) dB(A) 72 72 72 72 Transport weight Kg 2140 2445 2640 2860 Operating weight Kg 2300 2660 2840 3100 612 722 812 982 Cooling capacity (1) kW 736 868 980 1160 Absorbed power (1) kW 131 154 174 222 EER (1) 5.62 5.64 5.63 5.23 Cooling capacity (1) kW 734 866 977 1157 Absorbed power (1) kW 135 159 180 229 EER (1) 5.42 5.45 5.44 5.06 SEER (2) 6.02 6.11 6.07 6.14 Energy Efficiency (2) % 233<td>Max. starting current A 199 257 318 373 420 STD version (3) dB(A) 76 76 76 76 76 76 76 78 72<td>Max. starting current A 199 257 318 373 420 504 STD version (3) dB(A) 76 76 76 76 76 76 SSL version (3) dB(A) 72</td></td></td>	Max. starting current A 199 257 STD version (3) dB(A) 76 76 SSL version (3) dB(A) 72 72 Transport weight Kg 2140 2445 Operating weight Kg 2300 2660 612 722 Cooling capacity (1) kW 736 868 Absorbed power (1) kW 131 154 EER (1) 5.62 5.64 Cooling capacity (1) kW 734 866 Absorbed power (1) kW 135 159 EER (1) 5.42 5.45 SEER (2) 6.02 6.11 Energy Efficiency (2) % 233 236 SEER with ID accessory (2) 6.92 7.02 Energy Efficiency with ID accessory (2) 6.92 7.02 Capacity steps n° 2 2 Vater flow l/s 35.16 41.47 Pressure drops kPa 45	Max. starting current A 199 257 318 STD version (3) dB(A) 76 76 76 SSL version (3) dB(A) 72 72 72 Transport weight Kg 2140 2445 2640 Operating weight Kg 2300 2660 2840 612 722 812 Cooling capacity (1) kW 736 868 980 Absorbed power (1) kW 131 154 174 EER (1) 5.62 5.64 5.63 Cooling capacity (1) kW 734 866 977 Absorbed power (1) kW 734 866 977 Absorbed power (1) kW 135 159 180 EER (1) 5.42 5.45 5.44 SEER (2) 6.02 6.11 6.07 Energy Efficiency (2) % 233 236 235 SEER with ID accessory (2) 6.92 7.02	Max. starting current A 199 257 318 373 STD version (3) dB(A) 76 76 76 76 SSL version (3) dB(A) 72 72 72 72 Transport weight Kg 2140 2445 2640 2860 Operating weight Kg 2300 2660 2840 3100 612 722 812 982 Cooling capacity (1) kW 736 868 980 1160 Absorbed power (1) kW 131 154 174 222 EER (1) 5.62 5.64 5.63 5.23 Cooling capacity (1) kW 734 866 977 1157 Absorbed power (1) kW 135 159 180 229 EER (1) 5.42 5.45 5.44 5.06 SEER (2) 6.02 6.11 6.07 6.14 Energy Efficiency (2) % 233 <td>Max. starting current A 199 257 318 373 420 STD version (3) dB(A) 76 76 76 76 76 76 76 78 72<td>Max. starting current A 199 257 318 373 420 504 STD version (3) dB(A) 76 76 76 76 76 76 SSL version (3) dB(A) 72</td></td>	Max. starting current A 199 257 318 373 420 STD version (3) dB(A) 76 76 76 76 76 76 76 78 72 <td>Max. starting current A 199 257 318 373 420 504 STD version (3) dB(A) 76 76 76 76 76 76 SSL version (3) dB(A) 72</td>	Max. starting current A 199 257 318 373 420 504 STD version (3) dB(A) 76 76 76 76 76 76 SSL version (3) dB(A) 72

DIMENSIONS

Weights

Transport weight

Operating weight

MODEL			202	262	312	362	412	472	552	612	722	812	982	1062	1232	1352
L	STD/SSL	mm	3700	3700	3700	3800	3900	3900	3900	4900	4900	4900	5300	5300	5550	5550
W	STD	mm	1000	1100	1100	1150	1200	1200	1200	1200	1300	1300	1400	1400	2000	2000
VV	SSL	mm	1200	1250	1250	1350	1350	1350	1400	1400	1450	1450	1550	1550	2150	2150
11	STD	mm	1800	1800	1900	1950	2000	2050	2150	2150	2250	2300	2450	2450	2500	2550
н	SSL	mm	1800	1950	2050	2100	2150	2200	2300	2300	2400	2450	2600	2600	2650	2700

5205

5880

5670

6470

6950

7220

7080

7880

9060

10030

10050

11230

4560

5110

Kg

CLEARANCE AREA

TWH 202÷1352 VV/H/A

500 500 800 500

- Chilled water from 12 to 7 °C, water temperature at the condenser from 30 to 35 °C. Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.

 Sound pressure level measured in free field conditions at 1 m from the unit. 1. 2.
- 3.
- According to ISO 3744.

 N.B. Weights of SSL version are specified on technical brochure.

idroinverter

TWH 321÷1321 VV/Y/A

A CLASS ENERGY EFFICIENCY WATERCOOLED LIQUID CHILLERS WITH (INVERTER) SCREW COMPRESSORS AND FLOODED SHELL AND TUBE EXCHANGERS.

The A CLASS liquid Chillers of the TWH 321÷1321 VV/Y/A series, with R134a refrigerant, are designed to satisfy the needs of the service sector or industrial systems requiring high power.

These units are characterized by an high efficiency (EER) and are equipped with latest generation Screw compressors, flooded shell and tube exchangers and connections for condensation with cooling tower water or well water or with a Dry-Cooler. Furthermore, they have a series of accessories which are factory fitted or supplied separately such as desuperheater, total heat recovery and, if neccessary, a device for operating a Heat Pump. Designed and produced to optimize the layout of each component so as to make any necessary maintenance operations more convenient, these units have an essential and compact structure intended for indoor installation. The units can be equipped with Inverter control on one or on both the Screw compressors, to significantly reduce the inrush current of the unit. The solution with double Inverter allows, in addition to the above described, to increase the power efficiency of the unit in the same size, adapting to the different needs and solutions.

The units are compliant to the ErP 2021 Regulation.

On request, units can be supplied with R513A refrigerant (TWH 321+1321 VV/J/A).

FROM 280 KW TO 1289 KW.

VERSION

TWH

Cooling only

TWH/SSL

Super silenced cooling only

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Screw compressors with suction filter, oil sight glass, thermal protection and stepless capacity steps. Oil separator and crankcase heater installed on cooling circuit.
- Shell and tube type condenser, with easily removable cast iron heads to enable access for maintenance operations. Water connections for cooling tower and Dry-Cooler operation; on request for well water.
- High efficiency flooded shell and tube type evaporator, with one circuit on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on suction, discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R134a refrigerant. On request R513A refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers BT Low water temperature kit HR Desuperheater

HRT Total heat recovery

FΕ Antifreeze heater for evaporator Ш Inverter on one compressor and soft start

ID Inverter on all compressors

SS Soft start

DP Device for heat pump operation WM Web Monitoring - Wireless remote monitoring (GPRS/EDGE/3G/TCP-IP)

IS Modbus RTU protocol, RS485 serial

interface

IST Modbus TCP/IP protocol, Ethernet port ISB BACnet MSTP protocol, RS485 serial

ISBT BACnet TCP/IP protocol, Ethernet port

ISL LonWorks protocol, FTT-10 serial interface

ISS SNMP protocol, Ethernet port IAV Remote set-point, 0-10 V signal IAA Remote set-point, 4-20 mA signal Remote signal for second set-point IAS

activation IDL Demand limit from digital input Potential free contacts

CP

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel

PV3 3-Way electronic pressostatic valve

AG Rubber shock absorbers ΑM Spring shock absorbers

FL Flow switch

TECHNIC	AL DATA -TWH 32	1÷132	1 VV	/Y/A									
MODEL			321	341	391	451	491	591	651	731	901	1101	1321
	Cooling capacity (1)	kW	280	341	392	448	507	626	711	792	961	1126	1289
Cooling	Absorbed power (1)	kW	50	60	69	79	88	108	121	132	160	188	217
	EER (1)		5.60	5.68	5.68	5.67	5.76	5.80	5.88	6.00	6.01	5.99	5.94
	Cooling capacity (1)	kW	279	340	391	446	505	623	708	789	957	1122	1284
0 1:	Absorbed power (1)	kW	51	61	70	81	90	111	124	135	164	192	222
Cooling (EN14511)	EER (1)		5.47	5.57	5.59	5.51	5.61	5.61	5.71	5.84	5.84	5.84	5.78
(LIVI4511)	SEER (2)		7.03	7.20	7.25	7.11	7.27	7.34	7.46	7.63	7.66	7.67	7.62
	Energy Efficiency (2)	%	273	280	282	276	283	286	290	297	298	299	297
	Cooling capacity (1)	kW	329	401	459	527	595	734	833	928	1125	1319	1510
Cooling *	Absorbed power (1)	kW	60	73	84	96	107	131	148	161	194	228	263
	EER (1)		5.48	5.49	5.46	5.49	5.56	5.60	5.63	5.76	5.80	5.79	5.74
0 1: *	Cooling capacity (1)	kW	328	399	458	524	592	730	828	923	1119	1312	1502
Cooling * (EN14511)	Absorbed power (1)	kW	61	75	85	99	110	135	153	166	200	235	271
(LIN14511)	EER (1)		5.38	5.32	5.39	5.29	5.38	5.41	5.41	5.56	5.60	5.58	5.54
	Quantity	n°	2	2	2	2	2	2	2	2	2	2	2
Compressor	Refrigerant circuits	n°	1	1	1	1	1	1	1	1	1	1	1
	Capacity steps	n°						Stepless					
	Water flow	l/s	13.38	16.29	18.73	21.40	24.22	29.91	33.97	37.84	45.91	53.80	61.59
Evaporator	Pressure drops	kPa	28	32	26	60	54	57	57	54	56	57	61
	Water connections	DN	100	100	100	125	125	125	125	150	150	150	150
	Water flow	l/s	15.77	19.16	22.03	25.18	28.43	35.07	39.75	44.15	53.56	62.78	71.95
Condenser	Pressure drops	kPa	46	39	42	62	52	60	62	65	58	58	59
	Water connections	DN	80	100	100	100	125	125	125	125	150	150	150
EL .: 1	Power supply	V/Ph/Hz						400/3/50					
Electrical characteristics	Max. running current	А	178	214	238	270	292	354	398	438	456	536	622
Characteristics	Max. starting current	Α	240	258	314	330	434	465	487	549	558	598	775
Cound processing	STD version (3)	dB(A)	76	76	77	77	77	77	77	79	79	80	80
Sound pressure	SSL version (3)	dB(A)	72	72	73	73	73	73	73	75	75	76	76
\\/aimbto	Transport weight	Kg	2690	2830	2913	3215	3602	3980	4210	4745	5210	5675	6500
Weights	Operating weight	Kg	2750	2900	3000	3500	3700	4100	4350	4900	5400	5900	6750

$D\Pi$	M = N	Jeli	\cup V	C
ווט	MEN	יוכע	\cup IN	J

MODEL			321	341	391	451	491	591	651	731	901	1101	1321
L	STD/SSL	mm	3700	3700	3700	4200	4200	4200	4200	4200	4200	4500	4600
W	STD/SSL	mm	1300	1300	1300	1400	1400	1400	1400	1400	1600	1600	1600
Н	STD/SSL	mm	2100	2100	2100	2200	2200	2200	2200	2200	2250	2250	2250

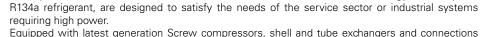
TWH 321÷1321 VV/Y/A 500 | 500 | 800 | 500

- Chilled water from 12 to 7 °C, water temperature at the condenser from 30 to 35 °C. Seasonal energy efficiency of cooling at low temperature. According to EU 2. Regulation n. 2016/2281.
- 3. Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.

 N.B. Weights of SSL version are specified on technical brochure.

 * Unit provided with Inverter on both compressors.

idroinverter



TWH 252-T+2122-T VV/Y/A

A CLASS ENERGY EFFICIENCY WATERCOOLED LIQUID CHILLERS WITH (INVERTER) SCREW COMPRESSORS AND SHELL AND TUBE EXCHANGERS.

The liquid Chillers of the TWH 252-T÷2122-T VV/Y/A series, with A CLASS energy efficiency and

for condensation with cooling tower water or well water or with a Dry-Cooler, these units have a series of accessories which are factory fitted or supplied separately. Designed and produced to optimize the layout of each component so as to make any necessary maintenance operations more convenient, these units have an essential and compact structure intended for indoor installation. Furthermore, accessories as the Inverter control on one Screw compressor or both is also available for getting the highest efficiency at part load and a significant reduction of starting current.

The units are compliant to the ErP 2021 Regulation.

On request, units can be supplied with R513A refrigerant (TWH 252-T+2122-T VV/J/A).

FROM 250 KW TO 2143 KW.

VERSION

TWH

Cooling only

TWH/SSL

Super silenced cooling only

FEATURES

- · Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Screw compressors with built-in oil separator, suction filter, crankcase heater, oil sight glass, thermal protection and stepless capacity steps.
- Shell and tube type condenser, with easily removable cast iron heads to enable access for maintenance operations. Each cooling circuit is supplied with an independent condenser. Water connections for cooling tower and Dry-Cooler operation; on request for well water.
- Shell and tube evaporator with two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R134a refrigerant. On request R513A refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers BT Low water temperature kit HR Desuperheater HRT Total heat recovery

Antifreeze heater for evaporator FE Ш Inverter on one compressor and soft start

ID Inverter on all compressors

SS Soft start

DΡ Device for heat pump operation Device for high temperature hot water HTW production.

Web Monitoring - Wireless remote WM monitoring (GPRS/EDGE/3G/TCP-IP) IS Modbus RTU protocol, RS485 serial interface

IST Modbus TCP/IP protocol, Ethernet port ISB

BACnet MSTP protocol, RS485 serial interface

ISBT BACnet TCP/IP protocol, Ethernet port ISL LonWorks protocol, FTT-10 serial interface

ISS SNMP protocol, Ethernet port IAV/ Remote set-point, 0-10 V signal IAA Remote set-point, 4-20 mA signal IAS Remote signal for second set-point activation

IDL Demand limit from digital input

CP Potential free contacts

LOOSE ACCESSORIES:

MN High and low pressure gauges Remote control panel CR

PV3 3-Way electronic pressostatic valve

AG Rubber shock absorbers ΑM Spring shock absorbers

FΙ Flow switch

77

9713

10700

78

10308

11470

Cooling Cooling capacity (1)	MODEL			252-T	302-T	362-T	422-T	502-T	582-T	672-T	782-
EER (1)		Cooling capacity (1)	kW	250	307	359	427	499	572	675	783
Cooling Absorbed power (1)	Cooling	Absorbed power (1)	kW	46.2	58.1	65.4	78.1	85.0	101	121	137
Absorbed power (1)		EER (1)		5.41	5.28	5.49	5.47	5.87	5.66	5.58	5.72
EER (1)		Cooling capacity (1)	kW	250	307	359	427	499	571	674	782
EEN		Absorbed power (1)	kW	47.6	60.0	67.7	80.7	88.4	104	125	142
SEER (2)		EER (1)		5.25	5.12	5.30	5.29	5.64	5.49	5.39	5.51
Compressor Com	EN 14511)	SEER (2)		6.35	6.55	6.71	6.68	6.87	6.87	6.98	6.87
Compressor Com		Energy Efficiency (2)	%	246	254	260	259	267	267	271	267
Refrigerant circuits			n°	2		2			2	2	2
Capacity steps	Compressor		n°							2	2
Water flow Vs 11.94 14.67 17.15 20.40 23.84 27.33 32.25						_					
Pressure drops R-Pa 43 37 40 39 34 38 38 38 Water connections DN 125 150 150 150 200				11 94	14 67	1715		1	2733	32 25	37.4
Water connections	Evaporator		-								52
Water flow Vis 14.15 17.44 20.28 24.13 27.90 32.15 38.03 27.50 38.03 27.50 38.03 37.50 34.50 3	_ , , , , , , , , , , , , , , , , , , ,	-									200
Pressure drops					-			-			43.9
Water connections	Ondenser										40
Power supply	Soriacrisci		-			_				-	100
Max. running current				- 00	1 00	00			00	100	100
Max. starting current A 200 218 245 282 347 383 471	Electrical	- '''		10/	102	210			206	202	444
STD version (3) dB(A) 75 75 75 75 76 76 76 76	characteristics										559
SSL version (3) dB(A) 71 71 71 71 72 72 72 72											76
Meights Transport weight Kg 1983 2254 2423 2625 2943 3039 3715	Sound pressure									-	70
Operating weight Kg 2140 2460 2620 2860 3260 3350 4110 MODEL					1						4079
MODEL	Neights										4610
Cooling capacity (1)		Operating weight	Ng	2140	2400	2020	2800	3200	3350	4110	4010
Absorbed power (1)	MODEL			902-T	1042-T	1182-T	1342-T	1492-T	1662-T	1872-T	2122
EER (1)		Cooling capacity (1)	kW	901	1040	1183	1342	1497	1662	1902	2143
Cooling capacity (1)	Cooling	Absorbed power (1)	kW	157	182	205	235	255	293	355	374
Absorbed power (1)		EER (1)		5.74	5.71	5.77	5.71	5.87	5.67	5.36	5.73
EER (1)		Cooling capacity (1)	kW	901	1039	1182	1341	1496	1661	1901	2142
EN14511)		Absorbed power (1)	kW	163	188	212	243	265	301	366	387
SEER (2)	•	EER (1)		5.53	5.53	5.58	5.52	5.65	5.52	5.19	5.53
Quantity	EN14511)										7.12
Quantity		Energy Efficiency (2)	%	272	275	281	280	284	281	277	277
Refrigerant circuits		7									2
Capacity steps	Compressor				1						2
Water flow Vs 43.05 49.69 56.52 64.12 71.52 79.41 90.87		0		_		_			_	_	_
Pressure drops KPa 43 44 42 52 59 40 50 Water connections DN 200 250 250 250 250 250 Water flow I/s 50.55 58.38 66.32 75.35 83.71 93.41 108 Pressure drops KPa 39 41 37 40 35 32 42 Water connections DN 100 100 125 125 125 125 125 Power supply V/Ph/Hz 400/3/50 Max. running current A 528 590 672 770 730 804 1296 Max. starting current A 564 653 784 893 912 992 1583 STD version (3) dB(A) 77 77 77 77 78 79 79 81				43.05	49.69	56 52			79 41	90.87	102
Water connections DN 200 250	=vanorator										49
Water flow I/s 50.55 58.38 66.32 75.35 83.71 93.41 108	_vaporator										300
Pressure drops kPa 39 41 37 40 35 32 42											120
Water connections DN 100 100 125 125 125 125 125 125	Condensor		-		-						41
Power supply V/Ph/Hz 400/3/50 Max. running current A 528 590 672 770 730 804 1296	Jonuel ISEI	-			1						125
Max. running current				100	100	125			125	125	125
haracteristics Max. running current A 528 590 672 770 730 804 1296 Max. starting current A 564 653 784 893 912 992 1583 STD version (3) dB(A) 77 77 77 78 79 79 81	Electrical	- '''		F00	F00	070			004	1000	440
STD version (3) dB(A) 77 77 77 78 79 79 81			_		-						146
Sound pressure Study version (3) dB(A) 77 77 78 79 79 81		U					1				166
		LCID vorgion (2)	1 4B(V)	77	1 77	- 77	70	70	70	. 01	82

N A		NS

SSL version (3)

Transport weight

Operating weight

Sound pressure

Weights

MC	DEL		252-T	302-T	362-T	422-T	502-T	582-T	672-T	782-T	902-T	1042-T	1182-T	1342-T	1492-T	1662-T	1872-T	2122-T
L	STD/SSL	mm	3700	3700	3700	3800	3900	3900	3900	4900	4900	4900	5300	5300	5550	5550	5550	5550
W	STD	mm	1000	1100	1100	1150	1200	1200	1200	1200	1300	1300	1400	1400	2000	2000	2000	2000
VV	SSL	mm	1200	1250	1250	1350	1350	1350	1400	1400	1450	1450	1550	1550	2150	2150	2150	2150
	STD	mm	1800	1800	1900	1950	2000	2050	2150	2150	2250	2300	2450	2450	2500	2550	2550	2550
п	SSL	mm	1800	1950	2050	2100	2150	2200	2300	2300	2400	2450	2600	2600	2650	2700	2700	2700

73

5259

6040

CLEARANCE AREA

TWH 252-T÷2122-T VV/Y/A 500 | 500 | 800 | 500

dB(A)

Kg

Kg

73

4862

5520

NOTES

- 1. Chilled water from 12 to 7 °C, water temperature at the condenser from 30 to 35 °C.
- Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of SSL version are specified on technical brochure.

74

6315

7110

73

6070

6820

75

7843

8790

75

8263

9250

TWH 322÷2582 VV/Y

WATERCOOLED LIQUID CHILLERS WITH SCREW COMPRESSORS AND SHELL AND TUBE EXCHANGERS.

The liquid Chillers of the TWH 322÷2582 VV/Y series, with R134a refrigerant, are designed to satisfy the needs of the service sector or industrial systems requiring high power.

Equipped with latest generation Screw compressors, shell and tube exchangers and connections for condensation with cooling tower water or well water or with a Dry-Cooler, these units can also be produced in super silent versions. Furthermore, they have a series of accessories which are factory fitted or supplied separately such as heat recovery in series or in parallel, soft start and, if necessary, a device for operating a Heat Pump. Designed and produced to optimize the layout of each component so as to make any necessary maintenance operations more convenient, these units have an essential and compact structure intended for indoor installation.

The models 322÷392 are compliant to the ErP 2021 Regulation. The models 452÷2582 are compliant to the ErP 2021 Regulation with ID accessory (Inverter on all compressors).

On request, units can be supplied with R513A refrigerant (TWH 322÷2582 VV/J).

FROM 267 KW TO 2349 KW.

VERSION

TWH

Cooling only

TWH/SSL

Super silenced cooling only

FEATURES

- · Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Screw compressors with built-in oil separator, suction filter, crankcase heater, oil sight glass, thermal protection and stepless capacity steps.
- Shell and tube type condenser, with easily removable cast iron heads to enable access for maintenance operations. Each cooling circuit is supplied with an independent condenser. Water connections for cooling tower and Dry-Cooler operation; on request for well water.
- Shell and tube type evaporator with two independent circuits on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R134a refrigerant. On request R513A refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors.
- Microprocessor control and regulation system.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers BT Low water temperature kit HR Desuperheater HRT Total heat recovery FΕ Antifreeze heater for evaporator Ш Inverter on one compressor and soft start

ID Inverter on all compressors SS Soft start Device for heat pump operation

HTW Device for high temperature hot water production

Web Monitoring - Wireless remote WM monitoring (GPRS/EDGE/3G/TCP-IP) IS Modbus RTU protocol, RS485 serial interface

IST Modbus TCP/IP protocol, Ethernet port ISB BACnet MSTP protocol, RS485 serial

interface **ISBT** BACnet TCP/IP protocol, Ethernet port

ISL LonWorks protocol, FTT-10 serial interface

ISS SNMP protocol, Ethernet port ΙΔ\/ Remote set-point, 0-10 V signal ΙΑΑ Remote set-point, 4-20 mA signal

IAS Remote signal for second set-point activation

IDL Demand limit from digital input

CP Potential free contacts

LOOSE ACCESSORIES:

MN High and low pressure gauges CR Remote control panel

PV3 3-Way electronic pressostatic valve

ΑG Rubber shock absorbers

ΑM Spring shock absorbers

FΙ Flow switch

DΡ

MODEL			322	342	392	452	492	592	652	732	902
	Cooling capacity (1)	kW	267	323	374	426	488	577	660	750	892
Cooling	Absorbed power (1)	kW	57	69	80	90	99	123	136	150	182
· ·	EER (1)		4.68	4.68	4.68	4.73	4.93	4.69	4.85	5.00	4.9
	Cooling capacity (1)	kW	266	322	372	424	486	574	657	747	889
	Absorbed power (1)	kW	59	72	83	94	103	128	142	157	189
	EER (1)		4.47	4.48	4.46	4.51	4.74	4.48	4.62	4.77	4.7
Cooling	SEER (2)		5.66	5.71	5.71	5.95	6.11	5.93	5.95	6.15	6.0
EN14511)	Energy Efficiency (2)	%	218	220	220	230	236	229	230	238	23!
	SEER with ID accessory (2)	70	6.23	6.28	6.28	6.55	6.54	6.52	6.55	6.58	6.5
	Energy Efficiency with ID	%	241	243	243	254	254	253	254	255	25
	accessory (2) Quantity	n°	2	2	2	2	2	2	2	2	2
`~~~~			2		2		2	2	2	2	2
Compressor	Refrigerant circuits	n°		2		2					
	Capacity steps	n°	10.70	15.40	1707	20.05	Stepless	07.57	01.50	25.00	10.
	Water flow	I/s	12.76	15.43	17.87	20.35	23.32	27.57	31.53	35.83	42.
vaporator	Pressure drops	kPa	51	43	55	60	48	61	67	66	47
	Water connections	DN	100	125	125	125	125	150	150	150	20
	Water flow	l/s	15.48	18.71	21.67	24.67	28.00	33.43	38.00	42.99	51.
ondenser	Pressure drops	kPa	43	49	51	47	36	52	48	45	5
	Water connections	DN	65	65	65	65	80	80	80	80	8
lectrical	Power supply	V/Ph/Hz					400/3/50				
naracteristics	Max. running current	A	178	214	238	270	306	354	398	438	51
	Max. starting current	Α	240	258	314	330	374	465	487	549	72
ound pressure	STD version (3)	dB(A)	76	76	76	76	76	76	76	77	7
bana pressare	SSL version (3)	dB(A)	72	72	72	72	72	72	72	73	7.
/eights	Transport weight	Kg	2124	2183	2309	2340	2973	3121	3174	4274	46
veignts	Operating weight	Kg	2240	2350	2480	2510	3160	3440	3490	4580	50
ИODEL			1102	1202	1322	1452	1612	1812	2052	2292	25
	Cooling capacity (1)	kW	1049	1159	1286	1438	1612	1753	1922	2116	234
Cooling	Absorbed power (1)	kW	210	234	256	287	323	350	383	425	47
	EER (1)		5.00	4.95	5.02	5.01	4.99	5,01	5,02	4,98	4,9
	Cooling capacity (1)	kW	1045	1155	1281	1432	1604	1744	1913	2107	23
	Absorbed power (1)	kW	219	244	269	299	339	367	403	444	50
	EER (1)		4.78	4.73	4.77	4.79	4.73	4,75	4,75	4,75	4,6
ooling	SEER (2)		6.24	6.13	6.2	6.37	6.45	6.45	6.33	6.33	6.3
N14511)	Energy Efficiency (2)	%	242	237	240	247	250	250	245	245	24
	SEER with ID accessory (2)		6.68	6.68	6.76	6.82	7.10	7.10	7.03	7.03	7.0
	Energy Efficiency with ID	%	259	259	262	265	276	276	273	273	27
	accessory (2)				-						
	Quantity	n°	2	2	2	2	2	2	2	2	2
ompressor	Refrigerant circuits	n°	2	2	2	2	2	2	2	2	2
	Capacity steps	n°					Stepless				
	Water flow	l/s	50.12	55.37	61.44	68.70	77.02	83.75	91.83	101,10	112
vaporator	Pressure drops	kPa	62	51	59	65	81	74	70	60	10
	Water connections	DN	200	200	200	200	200	250	250	250	25
	Water flow	l/s	60.17	66.55	73.67	82.42	92.45	100,48	110,13	121,40	134
ondenser	Pressure drops	kPa	49	66	77	66	63	63	73	67	5
	Water connections	DN	100	100	100	100	125	125	125	125	12
	Power supply	V/Ph/Hz		1			400/3/50	1	1	1	
lectrical	Max. running current	Α	602	602	658	818	834	801	863	1032	114
naracteristics	Max. starting current	A	765	765	793	1610	1479	1013	1045	1129	13
	STD version (3)	dB(A)	703	80	80	81	82	82	83	84	8
ound pressure	SSL version (3)	dB(A)	75	76	76	77	78	78	79	80	8
	LOOF ACIDIOIT 191	I UD(A)	/ 5	1 /0	1 /0	1 //	1 /0	. /0	1 /3	1 00	1 0
				4650					-	-	01
Veights	Transport weight Operating weight	Kg Kg	4645 5100	4650 5220	5360 5940	5440 6100	6000 6690	6630 7380	8040 8940	8100 9050	9'

DIMENSIONS

MODEL			322	342	392	452	492	592	652	732	902	1102	1202	1322	1452	1612	1812	2052	2292	2582
L	STD/SSL	mm	3550	3550	3300	3300	3300	3500	3500	3600	3600	3600	4800	4800	5200	5500	5500	5500	5500	5500
W	STD/SSL	mm	800	800	1400	1400	1400	1450	1450	1650	1650	1650	1800	1800	1800	2250	2250	2250	2250	2250
Н	STD/SSL	mm	2000	2000	2150	2150	2150	2150	2150	2150	2150	2150	2150	2150	2150	2200	2200	2200	2200	2200

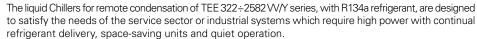
CLEARANCE AREA

TWH 322÷2582 VV/Y

500 500 800 500

- Chilled water from 12 to 7 °C, water temperature at the condenser from 30 to 35 °C.
- 2. Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- 3. Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.

 N.B. Weights of SSL version are specified on technical brochure.



CONDENSERLESS LIQUID CHILLERS WITH SCREW COMPRESSORS AND SHELL AND TUBE EXCHANGER.

Combined with the remote condenser, these units are ideal for indoor installation and, equipped with a self-supporting structure that sustains the main components, they reduce the overall dimensions to a minimum while at the same time making installation and maintenance operations easier.

Equipped with latest generation Screw compressors and shell and tube exchanger, these units can also be produced in a super silent version. They have cooling and hydraulic circuits complete with everything necessary for quick installation and high energy efficiency. A series of accessories, factory fitted or supplied separately, rounds off the variety of equipment in this product range.

On request, units can be supplied for R513A refrigerant (TEE 322+2582 VV/J).

MAXI OPOWER

FROM 235 KW TO 2060 KW.

VERSION

TEE

Cooling only

TEE/SSL

Super silenced cooling only

FEATURES

IST

CP

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Screw compressors with built-in oil separator, suction filter, crankcase heater, oil sight glass, thermal
 protection and stepless capacity steps.
- Shell and tube type evaporator with two independent circuits on the refrigerant side and one on the water side complete with water differential pressure switch.
- Cooling circuit shut-off valves on discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R134a refrigerant. On request R513A refrigerant.
- Electrical board includes: main switch with door safety interlock, fuses, thermal protection relays for compressors.
- Microprocessor control and regulation system.

Modbus TCP/IP protocol. Ethernet port

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM	Automatic circuit breakers
BT	Low water temperature kit
HR	Desuperheater
HRT	Total heat recovery
FE	Antifreeze heater for evaporator
П	Inverter on one compressor and soft start
ID	Inverter on all compressors
SS	Soft start

WM	Web Monitoring - Wireless remote
	monitoring (GPRS/EDGE/3G/TCP-IP)
IS	Modbus RTU protocol, RS485 serial
	interface

101	Widabab For Ar protocol, Ethornot port
ISB	BACnet MSTP protocol, RS485 serial
	interface
ISBT	BACnet TCP/IP protocol, Ethernet port
ISL	LonWorks protocol, FTT-10 serial
	interface
ISS	SNMP protocol, Ethernet port
IAV	Remote set-point, 0-10 V signal
IAA	Remote set-point, 4-20 mA signal
IAS	Remote signal for second set-point
	activation
IDL	Demand limit from digital input

Potential free contacts

LOOSE ACCESSORIES:

MN	High and low pressure gauges
CR	Remote control panel
AG	Rubber shock absorbers
AM	Spring shock absorbers
FL	Flow switch

MODEL			322	342	392	452	492	592	652	732	902
C lin	Cooling capacity (1)	kW	235	279	325	375	424	526	599	672	778
Cooling	Absorbed power (1)	kW	73	85	103	118	133	158	176	193	228
	Quantity	n°	2	2	2	2	2	2	2	2	2
Compressor	Refrigerant circuits	n°	2	2	2	2	2	2	2	2	2
	Capacity steps	n°		•			Stepless			•	•
	Water flow	l/s	11.23	13.33	15.53	17.92	20.26	25.13	28.62	32.11	37.1
Evaporator	Pressure drops	kPa	49	34	39	41	34	50	48	55	51
	Water connections	DN	100	125	125	125	125	150	150	150	150
0	Delivery line	Ø mm	2x42	2x42	2x54	2x54	2x54	2x64	2x64	2x76	2x76
Connections	Liquid line	Ø mm	2x35	2x35	2x35	2x35	2x35	2x42	2x42	2x42	2x5
=1	Power supply	V/Ph/Hz					400/3/50				
Electrical	Max. running current	A	178	214	238	270	306	354	398	438	518
characteristics	Max. starting current	A	240	258	314	330	374	465	487	549	723
0 1	STD version (2)	dB(A)	76	76	76	76	76	76	76	77	78
Sound pressure	SSL version (2)	dB(A)	72	72	72	72	72	72	72	73	74
A/ : 1 :	Transport weight	Kg	1480	1820	1840	1860	1900	2420	2540	2590	319
Weights	Operating weight	Kg	1570	1960	1990	2010	2040	2680	2820	2850	346
MODEL											
MODEL			1102	1202	1322	1452	1612	1812	2052	2292	258
	Cooling capacity (1)	kW	1102 905	1202 1015	1322 1140	1452 1282	1612 1433	1812 1535	2052 1681	2292 1833	258 206
	Cooling capacity (1) Absorbed power (1)	kW kW									
	0 1 7		905	1015	1140	1282	1433	1535	1681	1833	206
Cooling	Absorbed power (1)	kW	905 262	1015 296	1140 327	1282 364	1433 417	1535 447	1681 483	1833 528	206 599
Cooling	Absorbed power (1) Quantity	kW n°	905 262 2	1015 296 2	1140 327 2	1282 364 2	1433 417 2	1535 447 2	1681 483 2	1833 528 2	206 599 2
Cooling	Absorbed power (1) Quantity Refrigerant circuits	kW n° n°	905 262 2	1015 296 2	1140 327 2	1282 364 2	1433 417 2 2	1535 447 2	1681 483 2	1833 528 2	206 599 2
Cooling	Absorbed power (1) Quantity Refrigerant circuits Capacity steps	kW n° n° n°	905 262 2 2	1015 296 2 2	1140 327 2 2	1282 364 2 2	1433 417 2 2 Stepless	1535 447 2 2	1681 483 2 2	1833 528 2 2	206 599 2 2
Cooling	Absorbed power (1) Quantity Refrigerant circuits Capacity steps Water flow	kW n° n° n° l/s	905 262 2 2 2 43.24	1015 296 2 2 2	1140 327 2 2 54.47	1282 364 2 2 61.25	1433 417 2 2 Stepless 68.47	1535 447 2 2 2	1681 483 2 2 2	1833 528 2 2 2	206 599 2 2 2
Cooling Compressor Evaporator	Absorbed power (1) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops	kW n° n° n° l/s	905 262 2 2 2 43.24 57	1015 296 2 2 2 48.49 55	1140 327 2 2 2 54.47 56	1282 364 2 2 61.25 52	1433 417 2 2 Stepless 68.47 69	1535 447 2 2 2 73,34 75	1681 483 2 2 2 80,31 54	1833 528 2 2 2 87,58	206 599 2 2 2 98,4
Cooling Compressor Evaporator	Absorbed power (1) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections	kW n° n° n° l/s kPa DN	905 262 2 2 2 43.24 57 150	1015 296 2 2 2 48.49 55 200	1140 327 2 2 2 54.47 56 200	1282 364 2 2 61.25 52 200	1433 417 2 2 Stepless 68.47 69 200	1535 447 2 2 2 73,34 75 250	1681 483 2 2 2 80,31 54 250	1833 528 2 2 2 87,58 62 250	206 599 2 2 2 98,4 86 250 2x10
Cooling Compressor Evaporator Connections	Absorbed power (1) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Delivery line	kW n° n° n° l/s kPa DN Ø mm	905 262 2 2 2 43.24 57 150 2x76	1015 296 2 2 2 48.49 55 200 2x76	1140 327 2 2 54.47 56 200 2x89	1282 364 2 2 61.25 52 200 2x89	1433 417 2 2 Stepless 68.47 69 200 2x89	1535 447 2 2 73,34 75 250 2x89	1681 483 2 2 2 80,31 54 250 2x89	1833 528 2 2 2 87,58 62 250 2x108	206 599 2 2 2 98,4 86 250 2x10
Cooling Compressor Evaporator Connections Electrical	Absorbed power (1) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Delivery line Liquid line	kW n° n° n° l/s kPa DN Ø mm	905 262 2 2 2 43.24 57 150 2x76	1015 296 2 2 2 48.49 55 200 2x76	1140 327 2 2 54.47 56 200 2x89	1282 364 2 2 61.25 52 200 2x89	1433 417 2 2 Stepless 68.47 69 200 2x89 2x54	1535 447 2 2 73,34 75 250 2x89	1681 483 2 2 2 80,31 54 250 2x89	1833 528 2 2 2 87,58 62 250 2x108	206 599 2 2 2 98,4 86 250 2×10 2×6
Cooling Compressor Evaporator Connections Electrical	Absorbed power (1) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Delivery line Liquid line Power supply	kW n° n° n° l/s kPa DN Ø mm Ø mm V/Ph/Hz	905 262 2 2 43.24 57 150 2×76 2×54	1015 296 2 2 2 48.49 55 200 2x76 2x54	1140 327 2 2 2 54.47 56 200 2x89 2x54	1282 364 2 2 61.25 52 200 2x89 2x54	1433 417 2 2 Stepless 68.47 69 200 2x89 2x54 400/3/50	1535 447 2 2 2 73,34 75 250 2x89 2x54	1681 483 2 2 2 80,31 54 250 2x89 2x64	1833 528 2 2 2 87,58 62 250 2×108 2×64	206 599 2 2 2 98,4 86 250 2×10 2×6
Cooling Compressor Evaporator Connections Electrical characteristics	Absorbed power (1) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Delivery line Liquid line Power supply Max. running current	kW n° n° n° l/s kPa DN Ø mm Ø mm V/Ph/Hz A	905 262 2 2 2 43.24 57 150 2×76 2×54	1015 296 2 2 2 48.49 55 200 2×76 2×54	1140 327 2 2 2 54.47 56 200 2x89 2x54	1282 364 2 2 61.25 52 200 2x89 2x54	1433 417 2 2 Stepless 68.47 69 200 2x89 2x54 400/3/50 834	1535 447 2 2 2 73,34 75 250 2x89 2x54	1681 483 2 2 2 80,31 54 250 2x89 2x64	1833 528 2 2 2 87,58 62 250 2×108 2×64	206 599 2 2 98,4 86 250 2×10 2×6
Cooling Compressor Evaporator Connections Electrical characteristics	Absorbed power (1) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Delivery line Liquid line Power supply Max. running current Max. starting current	kW n° n° n° l/s kPa DN Ø mm Ø mm V/Ph/Hz A	905 262 2 2 2 43.24 57 150 2×76 2×54	1015 296 2 2 2 48.49 55 200 2×76 2×54	1140 327 2 2 2 54.47 56 200 2×89 2×54	1282 364 2 2 61.25 52 200 2x89 2x54 818 1610	1433 417 2 2 Stepless 68.47 69 200 2×89 2×54 400/3/50 834 1479	1535 447 2 2 2 73,34 75 250 2×89 2×54	1681 483 2 2 2 80,31 54 250 2×89 2×64	1833 528 2 2 2 87,58 62 250 2×108 2×64 1032 1129	206 599 2 2 98,4 86 250 2×10 2×6 114 136 85
MODEL Cooling Compressor Evaporator Connections Electrical characteristics Sound pressure Weights	Absorbed power (1) Quantity Refrigerant circuits Capacity steps Water flow Pressure drops Water connections Delivery line Liquid line Power supply Max. running current Max. starting current STD version (2)	kW n° n° n° l/s kPa DN Ø mm Ø mm V/Ph/Hz A dB(A)	905 262 2 2 2 43.24 57 150 2×76 2×54 602 765	1015 296 2 2 2 48.49 55 200 2x76 2x54 602 765 80	1140 327 2 2 2 54.47 56 200 2×89 2×54 658 793 80	1282 364 2 2 61.25 52 200 2×89 2×54 818 1610 81	1433 417 2 2 Stepless 68.47 69 200 2×89 2×54 400/3/50 834 1479 82	1535 447 2 2 2 73,34 75 250 2×89 2×54 801 1013 82	1681 483 2 2 2 80,31 54 250 2×89 2×64 863 1045 83	1833 528 2 2 2 87,58 62 250 2×108 2×64 1032 1129 84	206 599 2 2 2 98,4 86 250

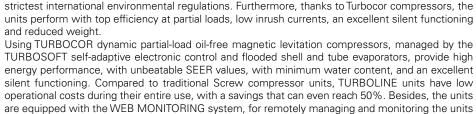
DIMEN:	SIONS																			
MODEL			322	342	392	452	492	592	652	732	902	1102	1202	1322	1452	1612	1812	2052	2292	2582
L	STD/SSL	mm	3300	3300	3700	3700	3700	3800	4000	4000	4300	4300	4300	5100	5100	5100	6000	6000	6000	6000
W	STDL	mm	800	800	800	800	800	1080	1080	1080	1080	1080	1080	1080	1080	1080	1400	1400	1400	1400
VV	SSL	mm	800	800	800	800	800	1080	1080	1080	1080	1080	1080	1080	1080	1080	1450	1450	1500	1500
11	STDL	mm	1700	1700	1700	1700	1700	1700	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2200	2200
П	SSL	mm	1700	1700	1700	1700	1700	1700	2100	2100	2100	2100	2100	2100	2100	2100	2200	2200	2300	2300

TEE 322÷2582 VV/Y

500 | 500 | 800 | 500

- Chilled water from 12 to 7 °C, condensing temperature 50 °C. Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.

 N.B. Weights of SSL version are specified on technical brochure.



A CLASS ENERGY EFFICIENCY WATERCOOLED LIQUID CHILLERS WITH TURBOCOR (MAGNETIC LEVITATION) COMPRESSORS AND FLOODED SHELL AND TUBE EXCHANGERS FOR COOLING TOWER OPERATION.

The innovative TWH 341÷2061 TT/H TURBOLINE units for cooling tower operation, featuring A CLASS energy efficiency and HFO-R1234ze refrigerant, are designed to provide an effective solution to highly selective system needs. The latest generation refrigerant HFO-R1234ze, with GWP<1 (Global warming Potential), is the most environmentally sustainable refrigerant on the market, and meets the

by means of GPRS/EDGE/3G/TCP-IP communication protocol. The users enabled to use this service can, by a dedicated Web page, access Monitoring, Management and Statistics activities.

The units are compliant to the ErP 2021 Regulation.

FROM 321 KW TO 1922 KW.

VERSION

TWH

Cooling only for cooling tower

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester powder painting.
- Semi-hermetic centrifugal compressors with dual Turbocor turbine, oil free, magnetic rising rotor, thermal protection, continuous capacity adjustment system thanks to built-in INVERTER, automatic anti-cavitation system. The power circuit of the compressor is fitted with a set of electrolytic condensers to control the rising in the event of a power failure, reactor for the power factor correction, EMI filter for electromagnetic compatibility.
- Shell and tube type condenser, with easily removable cast iron heads to enable access for maintenance operations.
- High efficiency flooded shell and tube type evaporator, with one circuit on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on suction, discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- HFO-R1234ze refrigerant.
- Electrical board includes: main on-off switch with door lock, fuses, electronic/digital overload device to protect the compressors, interface relay and terminals for external connections.
- TURBOSOFT control and regulation system is fitted with RS485 serial interface and Web Monitoring device for remote monitoring via GPRS/EDGE/3G/TCP-IP network.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers HR Desuperheater

HRT Total heat recovery

FΕ Antifreeze heater for evaporator

TS Touch screen Interface

IST Modbus TCP/IP protocol, Ethernet port

ISB BACnet MSTP protocol, RS485 serial

interface

BACnet TCP/IP protocol, Ethernet port **ISBT** ISL LonWorks protocol, FTT-10 serial

interface

ISS SNMP protocol, Ethernet port IAV Remote set-point, 0-10 V signal Remote set-point, 4-20 mA signal IAA

IAS Remote signal for second set-point activation

IDL Demand limit from digital input

CP Potential free contacts

LOOSE ACCESSORIES:

MN High and low pressure gauges

CR Remote control panel AG Rubber shock absorbers ΑM Spring shock absorbers

FL Flow switch

TECHNIC	CAL DATA - TWH C	341÷206	1TT/H					
MODEL			341	681	1031	1371	1711	2061
	Cooling capacity (1)	kW	321	639	958	1279	1601	1922
Cooling	Absorbed power (1)	kW	54	108	162	216	271	325
	EER (1)		5.94	5.92	5.91	5.92	5.91	5.91
	Cooling capacity (1)	kW	320	637	955	1276	1595	1916
C lin -	Absorbed power (1)	kW	56	110	165	220	277	331
Cooling (EN14511)	EER (1)		5.71	5.79	5.79	5.80	5.76	5.79
(LIVI4511)	SEER (2)		8.55	8.67	8.83	9.53	9.75	9.77
	Energy Efficiency (2)	%	334	339	345	373	382	383
	Quantity	n°	1	2	3	4	5	6
Compressor	Refrigerant circuits	n°	1	1	1	1	1	1
	Capacity steps	n°			Step	oless		
	Water flow	l/s	15.34	30.53	45.77	61.11	76.49	91.83
Evaporator	Pressure drops	kPa	45	46	45	34	52	50
	Water connections	DN	100	125	150	150	200	200
	Water flow	l/s	17.93	35.69	53.51	71.43	89.44	107
Condenser	Pressure drops	kPa	49	50	49	50	55	52
	Water connections	DN	100	125	150	150	200	200
Electrical	Power supply	V/Ph/Hz			400,	/3/50		
characteristics	Max. running current	A	150	300	450	600	750	900
Characteristics	Max. starting current	A	5	155	305	455	605	755
Sound pressure	(3)	dB(A)	72	74	76	76	77	78
Weights	Transport weight	Kg	1798	2837	3924	6408	7741	11474
vveignts	Operating weight	Kg	1930	3100	4340	7120	8780	13140

DIM	I = NI	c	אוכ
שווע	$I \subseteq I \setminus I$	JIC	סמול

DIIIVILI	.0.0.10							
MODEL			341	681	1031	1371	1711	2061
L	STD	mm	3400	3400	3450	4550	5500	6500
W	STD	mm	1100	1150	1800	1800	1800	1800
Н	STD	mm	1800	1950	2050	2100	2100	2150

TWH 341÷2061 TT/H 500 | 500 | 800 | 500

- Chilled water from 12 to 7 °C, water temperature at the condenser from 30 to 35 °C. Seasonal energy efficiency of cooling at low temperature. According to EU
- 1. 2. Regulation n. 2016/2281.
- 3. Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.

A CLASS ENERGY EFFICIENCY WATERCOOLED LIQUID CHILLERS WITH TURBOCOR (MAGNETIC LEVITATION) COMPRESSORS AND FLOODED SHELL AND TUBE EXCHANGERS FOR DRY-COOLER OPERATION.

The innovative TWH/DR 341÷2061 TT/H TURBOLINE units for Dry-Cooler operation, featuring A CLASS energy efficiency and HFO-R1234ze refrigerant, are designed to provide an effective solution to highly selective system needs. The latest generation refrigerant HFO-R1234ze, with GWP<1 (Global warming Potential), is the most environmentally sustainable refrigerant on the market, and meets the strictest international environmental regulations. Furthermore, thanks to Turbocor compressors, the units perform with top efficiency at partial loads, low inrush currents, an excellent silent functioning and reduced weight.

Using TURBOCOR dynamic partial-load oil-free magnetic levitation compressors, managed by the TURBOSOFT self-adaptive electronic control and flooded shell and tube evaporators, provide high energy performance, with unbeatable SEER values, with minimum water content, and an excellent silent functioning. Compared to traditional Screw compressor units, TURBOLINE units have low operational costs during their entire use, with a savings that can even reach 50%. Besides, the units are equipped with the WEB MONITORING system, for remotely managing and monitoring the units by means of GPRS/EDGE/3G/TCP-IP communication protocol. The users enabled to use this service can, by a dedicated Web page, access Monitoring, Management and Statistics activities.

The units are compliant to the ErP 2021 Regulation.

FROM 301 KW TO 1802 KW.

VERSION

TWH/DR

Cooling only for Dry-Cooler

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester
- Semi-hermetic centrifugal compressors with dual Turbocor turbine, oil free, magnetic rising rotor, thermal protection, continuous capacity adjustment system thanks to built-in INVERTER, automatic anti-cavitation system. The power circuit of the compressor is fitted with a set of electrolytic condensers to control the rising in the event of a power failure, reactor for the power factor correction, EMI filter for electromagnetic compatibility.
- Shell and tube type condenser, with easily removable cast iron heads to enable access for maintenance operations.
- High efficiency flooded shell and tube type evaporator, with one circuit on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on suction, discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- HFO-R1234ze refrigerant.
- Electrical board includes: main on-off switch with door lock, fuses, electronic/digital overload device to protect the compressors, interface relay and terminals for external connections.
- TURBOSOFT control and regulation system is fitted with RS485 serial interface and Web Monitoring device for remote monitoring via GPRS/EDGE/3G/TCP-IP network.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers HR Desuperheater HRT Total heat recovery FE Antifreeze heater for evaporator TS Touch screen Interface IST Modbus TCP/IP protocol, Ethernet port ISB BACnet MSTP protocol, RS485 serial interface

BACnet TCP/IP protocol, Ethernet port **ISBT** ISL LonWorks protocol, FTT-10 serial interface ISS SNMP protocol, Ethernet port ΙΔ\/ Remote set-point, 0-10 V signal Remote set-point, 4-20 mA signal ΙΑΑ IAS Remote signal for second set-point activation IDL Demand limit from digital input

CP Potential free contacts

LOOSE ACCESSORIES:

MN High and low pressure gauges CR Remote control panel AG Rubber shock absorbers AM Spring shock absorbers FL Flow switch

MODEL			341	681	1031	1371	1711	2061
	Cooling capacity (1)	kW	301	603	899	1203	1499	1802
Cooling	Absorbed power (1)	kW	71	142	212	283	354	424
	EER (1)		4.24	4.25	4.24	4.25	4.23	4.25
	Cooling capacity (1)	kW	300	601	896	1200	1494	1797
O 1:	Absorbed power (1)	kW	72	144	215	286	359	429
Cooling (EN14511)	EER (1)		4.17	4.17	4.17	4.20	4.16	4.19
(LIVI4511)	SEER (2)		8.55	8.67	8.83	9.53	9.75	9.77
	Energy Efficiency (2)	%	334	339	345	373	382	383
	Quantity	n°	1	2	3	4	5	6
Compressor	Refrigerant circuits	n°	1	1	1	1	1	1
	Capacity steps	n°			Step	oless		
	Water flow	l/s	14.38	28.81	42.95	57.48	71.62	86.10
Evaporator	Pressure drops	kPa	41	42	41	30	47	44
	Water connections	DN	100	125	150	150	200	200
	Water flow	l/s	19.4	38.8	58.0	77.7	96.7	116
Condenser	Pressure drops	kPa	55	56	55	56	62	58
	Water connections	DN	100	125	150	150	200	200
-1	Power supply	V/Ph/Hz			400	/3/50		
Electrical characteristics	Max. running current	А	150	300	450	600	750	900
Ji lai actel IStics	Max. starting current	A	5	155	305	455	605	755
Sound pressure	(3)	dB(A)	72	74	76	76	77	78
A/aialata	Transport weight	Kg	1849	2919	4065	6587	7942	11716
Weights	Operating weight	Kg	1990	3200	4510	7340	9040	13460

וח	ΝЛ	\square	ICI	\cap	NIC
וט	IVI		101	U	NS

MODEL			341	681	1031	1371	1711	2061
L	STD	mm	3400	3400	3450	4550	5500	6500
W	STD	mm	1100	1150	1800	1800	1800	1800
Н	STD	mm	1800	1950	2050	2100	2100	2150

TWH/DR 341÷2061 TT/H 500 | 500 | 800 | 500

- Chilled water from 12 to 7 °C, temperature at the condenser (with ethylene glycol at 35%) from 40 to 45 °C. Seasonal energy efficiency of cooling at low temperature. According to EU
- 2. Regulation n. 2016/2281.
- 3. Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.

TWH 291÷4061 TT/Y

A CLASS ENERGY EFFICIENCY WATERCOOLED LIQUID CHILLERS WITH TURBOCOR (MAGNETIC LEVITATION) COMPRESSORS AND FLOODED SHELL AND TUBE EXCHANGERS FOR COOLING TOWER OPERATION.

The innovative TWH 291÷4061TT/Y TURBOLINE units for cooling tower operation, featuring A CLASS energy efficiency, are designed to provide an effective solution to highly selective system needs. Efficiency at partial loads, low breakaway starting current, low levels of operational noise, reduced weight and the specific design and handling every manufacturing aspect, make the TURBOLINE series the top of the range.

Using TURBOCOR dynamic partial-load oil-free magnetic levitation compressors, managed by the TURBOSOFT self-adaptive electronic control and flooded shell and tube evaporators, provide high energy performance, with unbeatable SEER values, with minimum water content, and an excellent silent functioning. Compared to traditional Screw compressor units, TURBOLINE units have low operational costs during their entire use, with a savings that can even reach 50%. Besides, the units are equipped with the WEB MONITORING system, for remotely managing and monitoring the units by means of GPRS/EDGE/3G/TCP-IP communication protocol. The users enabled to use this service can, by a dedicated Web page, access Monitoring, Management and Statistics activities.

The units are compliant to the ErP 2021 Regulation.

On request, units can be supplied with R513A refrigerant (TWH 291÷4061 TT/J).

FROM 319 KW TO 3912 KW.

VERSION

TWH

Cooling only for cooling tower

FEATURES

- · Self-supporting galvanized steel frame protected with additional protection achieved via polyester
- Semi-hermetic centrifugal compressors with dual Turbocor turbine, oil free, magnetic rising rotor, thermal protection, continuous capacity adjustment system thanks to built-in INVERTER, automatic anti-cavitation system. The power circuit of the compressor is fitted with a set of electrolytic condensers to control the rising in the event of a power failure, reactor for the power factor correction, EMI filter for electromagnetic compatibility.
- Shell and tube type condenser, with easily removable cast iron heads to enable access for maintenance operations.
- High efficiency flooded shell and tube type evaporator, with one circuit on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on suction, discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R134a refrigerant. On request R513A refrigerant.
- Electrical board includes: main on-off switch with door lock, fuses, electronic/digital overload device to protect the compressors, interface relay and terminals for external connections.
- TURBOSOFT control and regulation system is fitted with RS485 serial interface and Web Monitoring device for remote monitoring via GPRS/EDGE/3G/TCP-IP network.

ACCESSORIES

interface

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers HR Desuperheater HRT Total heat recovery FE Antifreeze heater for evaporator TS Touch screen Interface IST Modbus TCP/IP protocol, Ethernet port

BACnet MSTP protocol, RS485 serial

BACnet TCP/IP protocol, Ethernet port **ISBT** ISL LonWorks protocol, FTT-10 serial interface ISS SNMP protocol, Ethernet port ΙΔ\/ Remote set-point, 0-10 V signal Remote set-point, 4-20 mA signal ΙΑΑ IAS Remote signal for second set-point activation IDL Demand limit from digital input

CP Potential free contacts

LOOSE ACCESSORIES:

MN High and low pressure gauges CR Remote control panel AG Rubber shock absorbers ΑM Spring shock absorbers FL Flow switch

ISB

TECHNIC	CAL DATA - TWH 29	1÷406	1TT/	Y								
MODEL			291	391	471	581	651	771	881	1041	1161	1301
	Cooling capacity (1)	kW	319	421	519	642	712	838	962	1040	1260	1302
Cooling (EN14511) Compressor Evaporator Condenser	Absorbed power (1)	kW	55	71	85	110	121	141	166	170	213	206
	EER (1)		5.80	5.93	6.11	5.84	5.88	5.94	5.80	6.12	5.92	6.32
	Cooling capacity (1)	kW	318	420	517	640	710	835	958	1036	1255	1298
C lin	Absorbed power (1)	kW	55	72	87	112	123	143	167	174	216	210
	EER (1)		5.78	5.83	5.94	5.71	5.77	5.84	5.74	5.95	5.81	6.18
(LIN14511)	SEER (2)		8.15	8.45	8.83	8.66	8.79	8.40	8.40	8.78	8.67	9.13
	Energy Efficiency (2)	%	318	330	345	338	344	328	328	343	339	357
	Quantity	n°	1	1	1	2	2	2	3	2	3	2
Compressor	Refrigerant circuits	n°	1	1	1	1	1	1	1	1	1	1
	Capacity steps	n°					Step	oless				
	Water flow	l/s	15.24	20.11	24.80	30.67	34.02	40.04	45.96	49.69	60.20	62.21
Evaporator	Pressure drops	kPa	46	48	50	49	42	53	57	53	59	45
	Water connections	DN	100	100	100	125	125	125	150	150	150	150
	Water flow	l/s	17.87	23.51	28.86	35.93	39.80	46.77	53.89	57.81	70.38	72.05
Condenser	Pressure drops	kPa	46	45	37	45	38	46	47	48	44	47
	Water connections	DN	100	100	125	125	125	125	150	150	150	150
	Power supply	V/Ph/Hz					400,	/3/50				
	Max. running current	А	145	231	187	290	462	462	435	374	693	420
Characteristics	Max. starting current	Α	2	2	2	147	233	233	292	189	464	212
Sound pressure	(3)	dB(A)	72	74	74	75	76	77	76	76	77	77
\\/aimhta	Transport weight	Kg	1795	2060	2360	2870	3225	3325	3715	3540	4235	4155
(EN14511) Compressor Evaporator Condenser Electrical characteristics	Operating weight	Kg	1920	2230	2580	3120	3560	3660	4070	3940	4720	4740

MODEL			1391	1461	1541	1691	2031	2421	2501	2701	3381	4061
	Cooling capacity (1)	kW	1427	1563	1676	1787	1944	2080	2382	2600	3245	3912
Cooling	Absorbed power (1)	kW	238	257	563 1676 1787 1944 2080 2382 2600 3245 257 281 295 306 341 396 411 511 6.08 5.96 6.06 6.35 6.10 6.02 6.33 6.35 559 1671 1783 1939 2075 2376 2592 3234 260 286 298 311 346 401 419 522 6.00 5.84 5.98 6.23 6.00 5.93 6.19 6.20 6.81 9.24 9.52 9.58 9.58 9.20 9.22 9.50 344 362 373 375 375 360 361 372 3 4 3 3 4 4 4 5 1 1 1 1 1 1 1 1 54 48 28 36 36 37 48 58	617						
	EER (1)		6.00	6.08	5.96	6.06	6.35	6.10	6.02	6.33	6.35	6.34
	Cooling capacity (1)	kW	1423	1559	1671	1783	1939	2075	2376	2592	3234	3898
C lin	Absorbed power (1)	kW	242	260	286	298	311	346	401	419	522	631
•	EER (1)		5.88	6.00	5.84	5.98	6.23	6.00	5.93	6.19	6.20	6.18
(LIVI4511)	SEER (2)		9.01	8.81	9.24	9.52	9.58	9.58	9.20	9.22	9.50	9.52
	Energy Efficiency (2)	%	352	344	362	373	375	375	360	361	372	373
	Quantity	n°	3	3	4	3	3	4	4	4	5	6
Compressor	Refrigerant circuits	n°	1	1	1	1	1	1	1	1	1	1
	Capacity steps	n°					Step	oless	,			
	Water flow	l/s	68.18	74.68	80.08	85.38	92.88	99.38	114	124	155	187
Evaporator	Pressure drops	kPa	45	54	48	28	36	36	37	48	58	62
	Water connections	DN	200	200	200	200	200	200	250	250	300	300
	Water flow	I/s	79.55	86.96	93.50	99.47	108	116	133	144	179	216
Condenser	Pressure drops	kPa	42	49	35	36	45	46	36	46	50	52
	Water connections	DN	200	200	200	200	200	250	250	250	300	300
EL	Power supply	V/Ph/Hz					400,	/3/50	,			
	Max. running current	А	561	561	924	630	630	748	840	840	1050	1260
Characteristics	Max. starting current	А	376	376	695	422	422	563	632	632	842	1052
Sound pressure	(3)	dB(A)	78	78	79	78	78	78	79	79	80	80
EER	Transport weight	Kg	4725	4825	7355	7730	7880	8350	9330	9430	14440	18420
vveignis	Operating weight	Kg	5310	5410	8190	8760	8910	9400	10520	32 2600 3245 6 411 511 12 6.33 6.35 76 2592 3234 1 419 522 13 6.19 6.20 10 9.22 9.50 0 361 372 4 5 1 7 48 58 0 250 300 3 144 179 6 46 50 0 250 300 0 840 1050 2 632 842 0 79 80 30 9430 14444	16590	21260

DIMENSIONS

MODEL			291	391	471	581	651	771	881	1041	1161	1301	1391	1461	1541	1691	2031	2421	2501	2701	3381	4061
L	STD	mm	3400	3400	3400	3400	3400	3400	3400	3400	3450	3450	3450	3450	4500	4500	4500	4500	4750	4750	5750	6750
W	STD	mm	1100	1150	1150	1150	1250	1250	1700	1300	1800	1400	1800	1800	1750	1800	1800	1800	1800	1800	1950	2100
Н	STD	mm	1800	1850	1950	1950	2000	2000	2000	2050	2050	2100	2100	2100	2100	2150	2150	2150	2200	2200	2350	2400

CLEARANCE AREA

TWH 291÷4061 TT/Y
500 | 500 | 800 | 500

- Chilled water from 12 to 7 °C, water temperature at the condenser from 30 to 35 °C.
 Seasonal energy efficiency of cooling at low temperature. According to EU
- Seasonal energy efficiency of cooling at low temperature. According to EU Regulation n. 2016/2281.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.

A CLASS ENERGY EFFICIENCY WATERCOOLED LIQUID CHILLERS WITH TURBOCOR (MAGNETIC LEVITATION) COMPRESSORS AND FLOODED SHELL AND TUBE EXCHANGERS FOR DRY-COOLER OPERATION.

The innovative TWH/DR 291÷1541 TT/Y TURBOLINE units for Dry-Cooler operation, featuring A CLASS energy efficiency, are designed to provide an effective solution for highly selective system needs. Efficiency at partial loads, low breakaway starting current, low levels of operational noise, reduced weight, specific design and handling of every manufacturing aspect, make the TURBOLINE series the top of the range.

Using TURBOCOR dynamic partial-load oil-free magnetic levitation compressors, managed by the TURBOSOFT self-adaptive electronic control and flooded shell and tube evaporators, provide high energy performance, with unbeatable SEER values, with minimum water content, and an excellent silent functioning. Compared to traditional Screw compressor units, TURBOLINE units have low operational costs during their entire use, with savings that can even reach 50%. Besides, the units are equipped with WEB MONITORING system, for remotely managing and monitoring the units by means of GPRS/EDGE/3G/TCP-IP communication protocol. The users enabled to use this service can, by a dedicated Web page, access Monitoring, Management and Statistics activities.

The units are compliant to the ErP 2021 Regulation.

On request, units can be supplied with R513A refrigerant (TWH/DR 291÷1541TT/J).

FROM 298 KW TO 1584 KW.

VERSION

TWH/DR

Cooling only for Dry-Cooler

FEATURES

- Self-supporting galvanized steel frame protected with additional protection achieved via polyester
- Semi-hermetic centrifugal compressors with dual Turbocor turbine, oil free, magnetic rising rotor, thermal protection, continuous capacity adjustment system thanks to built-in INVERTER, automatic anti-cavitation system. The power circuit of the compressor is fitted with a set of electrolytic condensers to control the rising in the event of a power failure, reactor for the power factor correction, EMI filter for electromagnetic compatibility.
- Shell and tube type condenser, with easily removable cast iron heads to enable access for maintenance operations.
- High efficiency flooded shell and tube type evaporator, with one circuit on the refrigerant side and one on the water side, complete with water differential pressure switch.
- Cooling circuit shut-off valves on suction, discharge and liquid line.
- Electronic expansion valve.
- Electronic high and low pressure gauges.
- R134a refrigerant. On request R513A refrigerant.
- Electrical board includes: main on-off switch with door lock, fuses, electronic/digital overload device to protect the compressors, interface relay and terminals for external connections.
- TURBOSOFT control and regulation system is fitted with RS485 serial interface and Web Monitoring device for remote monitoring via GPRS/EDGE/3G/TCP-IP network.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers HR Desuperheater HRT Total heat recovery

FΕ Antifreeze heater for evaporator

TS Touch screen Interface

IST Modbus TCP/IP protocol. Ethernet port

BACnet MSTP protocol, RS485 serial ISB

interface

ISBT BACnet TCP/IP protocol, Ethernet port ISL LonWorks protocol, FTT-10 serial interface ISS SNMP protocol, Ethernet port IAV Remote set-point, 0-10 V signal IAA Remote set-point, 4-20 mA signal Remote signal for second set-point IAS activation Demand limit from digital input Potential free contacts

IDL CP

LOOSE ACCESSORIES:

MN High and low pressure gauges CR Remote control panel AG Rubber shock absorbers AM Spring shock absorbers

FΙ Flow switch

TECHNIC	AL DATA - TWH/	DR 291÷	1541 TT	/Y					
MODEL			291	391	581	771	871	1161	1541
	Cooling capacity (1)	kW	298	395	598	792	894	1185	1584
Cooling	Absorbed power (1)	kW	70	92	141	186	211	277	372
	EER (1)		4.26	4.29	4.24	4.26	4.24	4.28	4.26
	Cooling capacity (1)	kW	297	394	596	789	891	1180	1579
Cooling (EN14511) Compressor Evaporator Condenser	Absorbed power (1)	kW	71	94	144	189	214	282	376
	EER (1)		4.18	4.19	4.14	4.17	4.16	4.18	4.20
(LIVI4511)	SEER (2)		8.15	8.45	8.66	8.40	8.40	8.67	9.24
	Energy Efficiency (2)	%	318	330	338	328	328	339	362
	Quantity	n°	1	1	2	2	3	3	4
Compressor	Refrigerant circuits	n°	1	1	1	1	1	1	1
	Capacity steps	n°				Stepless			
	Water flow	l/s	14.24	18.87	28.57	37.84	42.71	56.62	75.68
Evaporator	Pressure drops	kPa	44	45	48	50	54	56	42
	Water connections	DN	100	100	125	125	150	150	200
	Water flow	l/s	19.20	25.40	38.55	51.02	57.64	76.26	102
Condenser	Pressure drops	kPa	58	52	57	53	59	52	40
	Water connections	DN	100	100	125	125	150	150	200
Floorisal	Power supply	V/Ph/Hz				400/3/50			
Electrical characteristics	Max. running current	А	145	231	290	462	435	693	924
Characteristics	Max. starting current	А	2	2	147	233	292	464	695
Sound pressure	(2)	dB(A)	72	74	75	76	76	77	78
\\/aimhta	Transport weight	Kg	1840	2115	2955	3430	3855	4415	7555
Weights	Operating weight	Kg	1980	2300	3220	3790	4240	4940	8450

		\sim $^{\prime}$	
 MEI	\sim		
 $\mathbf{w} = \mathbf{v}$	M . DII		u

MODEL			291	391	581	771	871	1161	1541
L	STD	mm	3400	3400	3400	3400	3400	3450	4500
W	STD	mm	1100	1150	1150	1250	1700	1800	1750
Н	STD	mm	1800	1850	1950	2000	2000	2050	2100

TWH/DR 291÷1541 TT/Y 500 | 500 | 800 | 500

- Chilled water from 12 to 7 °C, temperature at the condenser (with ethylene glycol at 35%) from 40 to 45 °C. Seasonal energy efficiency of cooling at low temperature. According to EU 1.
- 2. Regulation n. 2016/2281.
- 3. Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.

SYSTEM LINE

Remote Condensers, Dry-Coolers and Hydronic Modules.

ARC 1111÷4222 K	140 - 141
ARC/SL 1111÷4222 K	142 - 143
ARC/SSL 2111÷4222 K	144 - 145
ARC 4141÷5282Y	146 - 147
ARC/SL 4231÷5282Y	148 - 149
ARC/SSL 4151÷5281 Y	150 - 151
WRC 3121÷5282	152 - 153
WRC/SL 3122÷5281	154 - 155
WRC/SSL 3132÷5282	156 - 157
MR 50÷80	158 - 159
MR 1500÷2500	160 - 161

ARC 1111+4222 K

REMOTE AIRCOOLED CONDENSERS WITH AXIAL FANS.

The Remote aircooled Condensers with axial fans of the ARC series are designed to be combined with evaporating units with R410A refrigerant (JEE /S/K/P).

These units, available in three configurations depending on the level of noiselessness required, Standard, Silenced (SL) and Super silenced (SSL), are equipped with latest generation axial fans, with motor fan shrouds having a large radius of curvature to eliminate all the air flow turbulence and with larger plenum to uniform the air distribution on the cooling coil.

The units can be installed with either horizontal or vertical air delivery, as needed.

VERSION

ARC

Base unit

FEATURES

- Frame in oven painted with a polyurethane resin and galvanised steel casework.
- The cowlings of the motorfans are made with a wide bending radius to eliminate any turbulence in the air flow.
- Heat exchanger is made with corrugated tubes with a greater heat exchange surface, fins cut with a special louver configuration to give the best external coefficient of heat exchange.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

LOOSE ACCESSORIES:

SD Wiring integrated in branch circuit box FR Fan speed control

SVV Supports for vertical air flow versions

COMBINATIONS

JEE S/K/P	4	5	7	8	9	11	14	16	18	20	24	27	34	40
ARC	1111	1111	1111	1111	1111	1112	2111	2111	2112	2113	3111	3112	3113	2121
JEE S/K/P	051	061	071	081	091	101	111	131	152	172				
ARC	3114	3121	3122	3123	3124	3125	3131	3132	4221	4222				

TECHNIC	AL DATA - ARC 111	1÷422	2 K									
MODEL			1111	1112	2111	2112	2113	2121	3111	3112	3113	3114
Fan	Quantity	n°	1	1	1	1	1	1	1	1	1	1
Connections	In	Ø mm	22	28	22	28	28	35	28	28	28	35
Connections	Out	Ø mm	18	18	18	18	18	28	22	22	22	28
Flectrical	Power supply	V/Ph/Hz	230/	1/50				400/	3/50			
	Absorbed power	kW	0.22	0.22	0.83	0.83	0.83	1.90	0.63	1.90	1.90	1.90
Characteristics	Absorbed current	А	0.97	0.97	1.45	1.45	1.45	3.2	1.25	3.20	3.20	3.20
Sound pressure	STD version (1)	dB(A)	43	43	51	51	51	58	46	58	58	58
Weights	Transport weight	Kg	89	89	89	94	94	169	158	158	158	178
	Operating weight	Kg	90	91	90	96	96	174	161	163	164	184

MODEL			3121	3122	3123	3124	3125	3131	3132	4221	4222
Fan	Quantity	n°	2	2	2	2	2	3	3	4	4
Connections	In	Ø mm	35	42	35	42	42	42	54	2x35	2x35
Electrical Po	Out	Ø mm	28	35	28	35	35	35	35	2x28	2x28
Flectrical	Power supply	V/Ph/Hz					400/3/50				
characteristics	Absorbed power	kW	1.26	1.26	3.80	3.80	3.80	5.70	5.70	5.76	7.20
Characteristics	Absorbed current	А	2.50	2.50	6.40	6.40	2 2 3 3 4	15.20			
Sound pressure	STD version (1)	dB(A)	48	48	60	60	60	62	62	54	55
	Transport weight	Kg	178	198	178	198	218	304	322	555	555
vveigitts	Operating weight	Kg	184	207	184	207	230	313	336	573	569

DIMENSIONS

MODEL			1111	1112	2111	2112	2113	2121	3111	3112	3113	3114	3121	3122	3123	3124	3125	3131	3132	4221	4222
L	STD	mm	1130	1130	1130	1130	1130	1910	1490	1490	1490	1490	2630	2630	2630	2630	2630	3770	3770	3230	3230
W	STD	mm	900	900	900	900	900	900	1260	1260	1260	1260	1260	1260	1260	1260	1260	1260	1260	2400	2400
Н	STD	mm	980	980	980	980	980	990	990	990	990	990	990	990	990	990	990	990	990	1565	1565

DIMENSIONAL

ARC 1111÷4222 K

- Sound pressure level measured in free field conditions at 10 m from the unit.
- According to ISO 3744.

 N.B. Combinations are made at condensing temperature 50 °C, ambient air
- temperature 35 °C.

 N.B. Clearance areas are specified on installation, use and maintenance manual.

ARC/SL 1111+4222 K

SILENCED REMOTE AIRCOOLED CONDENSERS WITH AXIAL FANS.

The Remote aircooled Condensers with axial fans of the ARC/SL series are designed to be combined with evaporating units with R410A refrigerant (JEE S/K/P).

These units, available in three configurations depending on the level of noiselessness required, Standard, Silenced (SL) and Super silenced (SSL), are equipped with latest generation axial fans, with motor fan shrouds having a large radius of curvature to eliminate all the air flow turbulence and with larger plenum to uniform the air distribution on the cooling coil.

The units can be installed with either horizontal or vertical air delivery, as needed.

VERSION

ARC/SL

Silenced unit

FEATURES

- Frame in oven painted with a polyurethane resin and galvanised steel casework.
- The cowlings of the motorfans are made with a wide bending radius to eliminate any turbulence
- Heat exchanger is made with corrugated tubes with a greater heat exchange surface, fins cut with a special louver configuration to give the best external coefficient of heat exchange.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

LOOSE ACCESSORIES:

SD Wiring integrated in branch circuit box FR

Fan speed control

Supports for vertical air flow versions

COMBINATIONS

JEE S/K/P	4	5	7	8	9	11	14	16	18	20	24	27	34	40
ARC/SL	1111	1111	1111	1112	1113	2111	2112	2113	2121	3111	3111	3111	3112	3120
JEE S/K/P	051	061	071	081	091	101	111	131	152	172				
ARC/SL	3121	3122	3123	3124	3131	3132	3133	3134	4221	4222				

TECHNIC	AL DATA - ARC/SL												
MODEL			1111	1112	1113	2111	2112	2113	2121	3111	3112	3120	
Fan	Quantity	n°	1	1	1	1	1	1	2	1	1	2	
Connections	In	Ø mm	22	22	22	22	22	28	28	35	35	28	
	Out	Ø mm	18	18	18	18	18	18	22	28	28	22	
Flootrical	Power supply	V/Ph/Hz		230,	/1/50		400/3/50						
Electrical characteristics	Absorbed power	kW	0.22	0.22	0.22	0.22	0.55	0.55	0.55	1.35	1.35	1.15	
Cilaiacteristics	Absorbed current	А	0.97	0.97	0.97	0.97	0.97	0.97	0.97	2.20	2.20	2.20	
Sound pressure	SL version (1)	dB(A)	43	43	43	43	43	43	43	52	52	42	
147 : 1 :	Transport weight	Kg	89	89	89	89	89	94	99	158	169	215	
Weights	Operating weight	Kg	90	91	92	90	90	96	105	161	174	221	
MODEL		3121	3122	3123	3124	3131	3132	3133	3134	4221	4222		
Fan	Quantity	n°	2	2	2	2	3	3	3	3	4	4	
Connections	In	Ø mm	35	42	35	42	42	42	54	54	2x35	2x42	
	Out	Ø mm	28	35	28	35	35	35	35	35	2x28	2x35	
Florenical	Power supply	V/Ph/Hz					400/3/50						
Electrical characteristics	Absorbed power	kW	0.88	0.88	2.70	2.70	1.89	4.05	4.05	4.05	4.60	4.60	
		1			1	1	1	1	1	1	1	1	

1.46

43

198

207

4.40

54

178

184

4.40

54

198

207

3.75

50

304

313

6.60

56

304

313

6.60

56

322

336

6.60

56

351

369

8.80

48

555

569

8.80

48

603

625

1.46

43

178

184

dB(A)

Kg

Kg

DIMENSIONS

characteristics

Sound pressure

Weights

Absorbed current

Transport weight

Operating weight

SL version (1)

MODEL			1111	1112	1113	2111	2112	2113	2121	3111	3112	3120	3121	3122	3123	3124	3131	3132	3133	3134	4221	4222
L	SL	mm	1130	1130	1130	1130	1130	1130	1910	1490	1490	2630	2630	2630	2630	2630	3770	3770	3770	3770	3230	3230
W	SL	mm	900	900	900	900	900	900	900	1260	1260	1260	1260	1260	1260	1260	1260	1260	1260	1260	2400	2400
Н	SL	mm	980	980	980	980	980	980	980	990	990	990	990	990	990	990	990	990	990	990	1565	1565

DIMENSIONAL

ARC/SL 1111÷4222 K

- Sound pressure level measured in free field conditions at 10 m from the unit. According to ISO 3744.
- N.B. Combinations are made at condensing temperature 50 °C, ambient air temperature 35 °C.

 N.B. Clearance areas are specified on installation, use and maintenance manual.

ARC/SSL 2111÷4222 K

SUPER SILENCED REMOTE AIRCOOLED CONDENSERS WITH AXIAL FANS.

The Remote aircooled Condensers with axial fans of the ARC/SSL series are designed to be combined with evaporating units with R410A refrigerant (JEE S/K/P).

These units, available in three configurations depending on the level of noiselessness required, Standard, Silenced (SL) and Super silenced (SSL), are equipped with latest generation axial fans, with motor fan shrouds having a large radius of curvature to eliminate all the air flow turbulence and with larger plenum to uniform the air distribution on the cooling coil.

The units can be installed with either horizontal or vertical air delivery, as needed.

VERSION

ARC/SSL

Super silenced unit

FEATURES

- Frame in oven painted with a polyurethane resin and galvanised steel casework.
- The cowlings of the motorfans are made with a wide bending radius to eliminate any turbulence
- Heat exchanger is made with corrugated tubes with a greater heat exchange surface, fins cut with a special louver configuration to give the best external coefficient of heat exchange.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

LOOSE ACCESSORIES:

SD Wiring integrated in branch circuit box FR

Fan speed control

Supports for vertical air flow versions

COMBINATIONS

JEE S/K/P	4	5	7	8	9	11	14	16	18	20	24	27	34	40
ARC/SSL	2111	2111	2111	2111	2111	2112	2112	3111	3111	3111	3112	3121	3121	3121
JEE S/K/P	051	061	071	081	091	101	111	131	152	172				
ARC/SSL	3124	3131	3132	3133	3141	4121	4131	4132	4221	4222				

TECHNIC	AL DATA - ARC/SS	L 2111	÷4222	K						
MODEL			2111	2112	3111	3112	3121	3124	3131	3132
Fan	Quantity	n°	1	1	1	1	2	2	3	3
Connections	In	Ø mm	22	28	28	35	35	42	42	42
Connections	Out	Ø mm	18	18	22	28	28	35	35	35
Electrical	Power supply	V/Ph/Hz	230/	/1/50			400,	3/50		
characteristics	Absorbed power	kW	0.13	0.94	0.24	0.24	0.47	0.47	0.42	0.71
Characteristics	Absorbed current	А	0.59	1.60	0.55	0.55	1.10	1.10	0.81	1.65
Sound pressure	SSL version (1)	dB(A)	34	22	41	41	43	43	39	45
Weights	Transport weight	Kg	48	79	158	178	178	198	304	304
vveignts	Operating weight	Kg	49	81	161	181	184	207	313	313

MODEL			3133	3141	4121	4131	4132	4221	4222
Fan	Quantity	n°	3	4	2	3	3	4	4
Connections	In	Ømm	54	35	42	42	54	2x35	2x35
Connections	Out	Ømm	35	28	35	35	42	2x28	2x28
Electrical	Power supply	V/Ph/Hz				400/3/50			
characteristics	Absorbed power	kW	0.71	0.94	1.78	2.67	2.67	3.56	3.56
Characteristics	Absorbed current	Α	1.65	2.20	4.44	6.66	6.66	8.88	8.88
Sound pressure	SSL version (1)	dB(A)	45	46	46	48	48	49	49
Weights	Transport weight	Kg	322	407	434	545	586	555	603
vveigitts	Operating weight	Kg	336	419	450	557	604	569	625

DIMENSIONS

Diivicit	0.0.10																
MODEL			2111	2112	3111	3112	3121	3124	3131	3132	3133	3141	4121	4131	4132	4221	4222
L	SSL	mm	1130	1130	1490	1490	2630	2630	3770	3770	3770	4910	3230	4580	4580	3230	3230
W	SSL	mm	900	900	1260	1260	1260	1260	1260	1260	1260	1260	1380	1380	1380	2400	2400
Н	SSL	mm	980	980	990	990	990	990	990	990	990	990	1565	1565	1565	1565	1565

DIMENSIONAL

ARC/SSL 2111÷4222 K

- Sound pressure level measured in free field conditions at 10 m from the unit.
- According to ISO 3744.

 N.B. Combinations are made at condensing temperature 50 °C, ambient air
- temperature 35 °C.

 N.B. Clearance areas are specified on installation, use and maintenance manual.

ARC 4141÷5282 Y

REMOTE AIRCOOLED CONDENSERS WITH AXIAL FANS.

The Remote aircooled Condensers with axial fans of the ARC series are designed to be combined with evaporating units with R134a refrigerant (TEE VV/Y).

These units, available in three configurations depending on the level of noiselessness required, Standard, Silenced (SL) and Super silenced (SSL), are equipped with latest generation axial fans, with motor fan shrouds having a large radius of curvature to eliminate all the air flow turbulence and with larger plenum to uniform the air distribution on the cooling coil.

The units, except the V shaped ones, can be installed with either horizontal or vertical air delivery, as needed.

On request, units can be supplied for R513A refrigerant (ARC 4141÷5282 J).

VERSION

ARC

Base unit

FEATURES

- Frame in oven painted with a polyurethane resin and galvanised steel casework.
- The cowlings of the motorfans are made with a wide bending radius to eliminate any turbulence in the air flow.
- Heat exchanger is made with corrugated tubes with a greater heat exchange surface, fins cut with a special louver configuration to give the best external coefficient of heat exchange.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

LOOSE ACCESSORIES:

SD Wiring integrated in branch circuit box

FR Fan speed control

SVV Supports for vertical air flow versions

COMBINATIONS

TEE VV/Y	322	342	392	452	492	592	652	732	902	1102	1202	1322	1452	1612	1813	2053	2293	2583
ARCY	4141	4151	4161	4171	4172	4251	4261	4271	4281	4282	5261	5271	5281	5242	3x4251	3x4252	3x4262	3x4272
TEE VV/J	322	342	392	452	492	592	652	732	902	1102	1202	1322	1452	1612	1812	2052	2292	2582
ARC J	4141	4151	4161	4171	4172	4251	4261	4271	4281	4282	5261	5271	5281	5242	2x4272	2x4281	2x4282	2x5272

TECHNICAL DATA - ARC 4141÷5282Y

MODEL			4141	4151	4161	4171	4172	4251	4252	4261	4262
Fan	Quantity	n°	4	5	6	7	7	10	10	12	12
Connections	In	Ø mm	2x64	2x64	2x76	2x76	2x76	2x64	2x64	2x76	2x76
Connections	Out	Ø mm	2x42	2x42	2x42	2x54	2x54	2x42	2x42	2x42	2x42
Electrical —	Power supply	V/Ph/Hz					400/3/50				
characteristics	Absorbed power	kW	7.20	9.00	10.80	12.60	12.60	18.00	68.40	21.60	21.60
Characteristics	Absorbed current	Α	15.20	19.00	22.80	26.60	26.60	38.00	38.00	45.60	45.60
Sound pressure	STD version (1)	dB(A)	55	56	57	56	56	59	59	59	59
	Transport weight	Kg	822	1016	1210	1302	1404	1590	1467	1754	1902
vveigitis	Operating weight	Kg	854	1055	1282	1366	1489	1660	1521	1854	2033

MODEL			4271	4272	4281	4282	5272	5273	5281	5282
Fan	Quantity	n°	14	14	16	16	14	14	16	16
Connections	In	Ø mm	2x76							
Connections	Out	Ø mm	2x54	2x54	2x54	2x54	2x64	2x64	2x64	2x64
Flootrical	Power supply	V/Ph/Hz				400/	/3/50			
	Absorbed power	kW	25.20	25.20	28.80	28.80	34.30	34.30	39.20	57.60
Characteristics	Absorbed current	Α	53.20	53.20	60.80	60.80	72.80	72.80	83.20	115.20
Sound pressure	STD version (1)	dB(A)	59	59	60	60	63	63	64	70
Moights	Transport weight	Kg	2043	2214	2331	2528	3971	4218	4769	4769
Fan Quantiful Connections In Out Electrical characteristics Power Absorb Sound pressure STD very Weights Weights Transport	Operating weight	Kg	2196	2367	2463	2702	4102	4369	4940	4940

DIMENSIONS

MODEL			4141	4151	4161	4171	4172	4251	4252	4261	4262	4271	4272	4281	4282	5272	5273	5281	5282
L	STD	mm	5930	7280	8630	9980	9980	7280	7280	8630	8630	9980	9980	11330	11330	9240	9240	10490	10490
W	STD	mm	1380	1380	1380	1380	1380	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400
Н	STD	mm	1565	1565	1565	1565	1565	1565	1565	1565	1565	1565	1565	1565	1565	2260	2260	2260	2260

DIMENSIONAL

ARC 4141÷4282 Y

ARC 5261÷5282 Y

- Sound pressure level measured in free field conditions at 10 m from the unit. According to ISO 3744.
- N.B. Combinations are made at condensing temperature 50 °C, ambient air temperature 35 °C
- temperature 35 °C.

 N.B. Clearance areas are specified on installation, use and maintenance manual.

ARC/SL 4231÷5282 Y

SILENCED REMOTE AIRCOOLED CONDENSERS WITH AXIAL FANS.

The Remote aircooled Condensers with axial fans of the ARC/SL series are designed to be combined with evaporating units with R134a refrigerant (TEE VV/Y).

These units, available in three configurations depending on the level of noiselessness required, Standard, Silenced (SL) and Super silenced (SSL), are equipped with latest generation axial fans, with motor fan shrouds having a large radius of curvature to eliminate all the air flow turbulence and with larger plenum to uniform the air distribution on the cooling coil.

The units, except the V shaped ones, can be installed with either horizontal or vertical air delivery, as needed.

On request, units can be supplied for R513A refrigerant (ARC/SL 4231÷5282 J).

VERSION

ARC/SL

Silenced unit

FEATURES

- Frame in oven painted with a polyurethane resin and galvanised steel casework.
- The cowlings of the motorfans are made with a wide bending radius to eliminate any turbulence in the air flow.
- Heat exchanger is made with corrugated tubes with a greater heat exchange surface, fins cut with a special louver configuration to give the best external coefficient of heat exchange.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

LOOSE ACCESSORIES:

SD Wiring integrated in branch circuit box

FR Fan speed control

SVV Supports for vertical air flow versions

COMBINATIONS

TEE VV/Y	322	342	392	452	492	592	652	732	902	1102	1202	1322	1452	1612	1813	2053	2293	2583
ARC/SLY	4231	4232	4241	4242	4251	4261	4271	4281	5261	5271	5281	5282	2x4272	2x4282	3x5171	3x5172	3x5251	3x5252
TEE VV/J	322	342	392	452	492	592	652	732	902	1102	1202	1322	1452	1612	1812	2052	2292	2582
ARC/SL J	4231	4232	4241	4242	4251	4261	4271	4281	5261	5271	5281	5282	2x4272	2x4282	2x5252	2x5261	2x5271	2x5281

MODEL			4231	4232	4241	4242	4251	4261	4271	4272	4281
Fan	Quantity	n°	6	6	8	8	10	12	14	14	16
rdII	,			-	_						_
Connections	ln .	Ø mm	2x54	2x54	2x54	2x54	2x64	2x76	2x76	2x76	2x76
	Out	Ømm	2x42	2x42	2x35	2x42	2x42	2x42	2x54	2x54	2x54
Electrical	Power supply	V/Ph/Hz					400/3/50				
characteristics	Absorbed power	kW	6.90	6.90	9.20	9.20	11.50	13.80	16.10	16.10	18.40
Giaracteristics	Absorbed current	A	13.20	13.20	17.60	17.60	22.00	26.40	30.80	30.80	35.20
Sound pressure	SL version (1)	dB(A)	50	50	51	51	52	52	52	52	53
\	Transport weight	Kg	891	965	1179	1278	1467	1754	2043	2214	2331
Weights	Operating weight	Kg	924	1008	1222	1334	1521	1854	2160	2367	2463
MODEL			4282	5171	5172	5251	5252	5261	5271	5281	5282
Fan	Quantity	n°	16	7	7	10	10	12	14	16	16
Connections	In	Ø mm	2x76	2x76	2x76	2x76	2x76	2x76	2x76	2x76	2x76
Connections	Out	Ø mm	2x54	2x54	2x54	2x54	2x54	2x54	2x64	2x64	2x64
EL .: 1	Power supply	V/Ph/Hz					400/3/50				
Electrical	Absorbed power	kW	18.40	10.92	10.92	15.60	15.60	18.72	21.84	24.96	38.40
characteristics	Absorbed current	А	35.20	20.30	20.30	29.00	29.00	34.80	40.60	46.40	65.60
Sound pressure	SL version (1)	dB(A)	53	53	53	55	55	56	56	57	65
	Transport weight	Kg	2528	2097	2283	2942	3117	3668	4218	4769	4769
Weights	Operating weight	Ka	2702	2183	2396	3027	3227	3799	4369	4940	4940

2183

2396

3027

3227

4369

3799

4940

2702

Kg

DIMENSIONS

Operating weight


MODEL			4231	4232	4241	4242	4251	4261	4271	4272	4281	4282	5171	5172	5251	5252	5261	5271	5281	5282
L	SL	mm	4580	4580	5930	5930	7280	8630	9980	9980	11330	11330	10275	10275	6740	6740	7990	9240	10490	10490
W	SL	mm	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	1170	1170	2400	2400	2400	2400	2400	2400
Н	SL	mm	1565	1565	1565	1565	1565	1565	1565	1565	1565	1565	1805	1805	2260	2260	2260	2260	2260	2260

DIMENSIONAL

ARC/SL 4231÷4282 Y

ARC/SL 5171÷5282 Y

- Sound pressure level measured in free field conditions at 10 m from the unit. According to ISO 3744.
- N.B. Combinations are made at condensing temperature 50 °C, ambient air
- temperature 35 °C.

 N.B. Clearance areas are specified on installation, use and maintenance manual.

ARC/SSL 4151÷5281 Y

SUPER SILENCED REMOTE AIRCOOLED CONDENSERS WITH AXIAL FANS.

The remote aircooled Condensers with axial fans of the ARC/SSL series are designed to be combined with evaporating units with R134a refrigerant (TEE VV/Y).

These units, available in three configurations depending on the level of noiselessness required, Standard, Silenced (SL) and Super silenced (SSL), are equipped with latest generation axial fans, with motor fan shrouds having a large radius of curvature to eliminate all the air flow turbulence and with larger plenum to uniform the air distribution on the cooling coil.

The units, except the V shaped ones, can be installed with either horizontal or vertical air delivery, as needed.

On request, units can be supplied for R513A refrigerant (ARC/SSL 4151÷5281 J).

VERSION

ARC/SSL

Super silenced unit

FEATURES

- Frame in oven painted with a polyurethane resin and galvanised steel casework.
- The cowlings of the motorfans are made with a wide bending radius to eliminate any turbulence in the air flow.
- Heat exchanger is made with corrugated tubes with a greater heat exchange surface, fins cut with a special louver configuration to give the best external coefficient of heat exchange.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

LOOSE ACCESSORIES:

SD Wiring integrated in branch circuit box

FR Fan speed control

SVV Supports for vertical air flow versions

COMBINATIONS

TEE VV/Y	322	342	392	452	492	592	652	732	902	1102	1202	1322	1452	1612	1813	2053	2293	2583
ARC/SSLY	4151	4161	4171	4251	4251	4261	4272	4282	5271	5272	5281	2x4271	2x4281	2x4282	3x4261	3x4271	3x4272	3x4281
TEE VV/J	322	342	392	452	492	592	652	732	902	1102	1202	1322	1452	1612	1812	2052	2292	2582
ARC/SSL J	4151	4161	4171	4251	4251	4261	4272	4282	5271	5272	5281	2x4271	2x4281	2x4282	2x4282	2x5271	2x5272	2x5281

TECHNICAL DATA - ARC/SSL 4151÷5281 Y 4161 4251 4271 Fan Quantity 5 10 12 14 2x76 Ø mm 2x64 2x76 2x64 2x76 2x76 In Connections Out Ø mm 2x42 2x42 2x54 2x42 2x42 2x54 400/3/50 Power supply V/Ph/Hz Electrical 4 45 5.34 6.23 12 46 Absorbed power kW 8.90 10.68 characteristics Absorbed current 11.10 13.32 15.54 22.20 26.64 31.08 Α dB(A) Sound pressure SSL version (1) 50 51 50 53 53 53 Transport weight 1016 1210 1404 1467 1902 2214 Kg Weights 1055 1282 1489 1521 2033 2367 Operating weight Kg MODEL 4281 5271 Fan Quantity 16 16 Ø mm 2x76 2x54 2x54 2x76 2x76 2x76 In Connections Out Ø mm 2x54 2x54 2x54 2x64 2x64 2x64 V/Ph/Hz 400/3/50 Power supply Electrical 12.46 12.74 12.74 14.24 14.24 14.56 Absorbed power kW characteristics Absorbed current 31.08 35.52 35.52 31.78 31.78 36.32 Sound pressure SSL version (1) dB(A) 53 54 54 58 57 57 Transport weight 2043 2528 2331 3971 4218 3769 Kg Weights

2702

2463

4088

4369

3940

2156

Κg

עוט	ΛEΝ	cic	ואוכ
יווע	/IEIN	\mathcal{O}	UND

Operating weight

MODEL			4151	4161	4171	4251	4261	4271	4272	4281	4282	5271	5272	5281
L	SSL	mm	7280	8630	9980	7280	8630	9980	9980	11330	11330	9240	9240	10490
W	SSL	mm	1380	1380	1380	2400	2400	2400	2400	2400	2400	2400	2400	2400
Н	SSL	mm	1565	1565	1565	1565	1565	1565	1565	1565	1565	2262	2262	2262

DIMENSIONAL

ARC/SSL 4151÷4282 Y

ARC/SSL 5271÷5281 Y

- Sound pressure level measured in free field conditions at 10 m from the unit. According to ISO 3744
- Combinations are made at condensing temperature 50 °C, ambient air
- N.B. Clearance areas are specified on installation, use and maintenance manual.

WRC 3121÷5282

DRY-COOLERS WITH AXIAL FANS.

The Dry-Coolers with axial fans of the WRC series are designed to be combined with watercooled liquid Chillers (JWH and TWH).

These units, available in three configurations depending on the level of noiselessness required, Standard, Silenced (SL) and Super silenced (SSL), are equipped with latest generation axial fans, with motor fan shrouds having a large radius of curvature to eliminate all the air flow turbulence and with larger plenum to uniform the air distribution on the cooling coil.

The units, except the V shaped ones, can be installed with either horizontal or vertical air delivery, as needed.

VERSION

WRC

Base unit

FEATURES

- Frame in pre-painted galvanised steel casework.
- The cowlings of the motorfans are made with a wide bending radius to eliminate any turbulence in the air flow.
- Heat exchanger with fins cut and special louver configuration to give the best external coefficient
 of heat exchange and threated warer connections.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

SD Wiring integrated in branch circuit box

FR Fan speed control

LOOSE ACCESSORIES:

VV Supports for vertical air flow versions

COMBIN	IATIC	NS																
JWH S/K/P JWH S/G/P	051	061	071	081	091	101	111	131	152	172								
WRC	3121	4111	3132	3134	4121	4122	3141	4131	4132	3151								
JWH S/K JWH S/G	051	061	071	081	091	101	111	131	152	172								
WRC	3121	4111	3132	3134	4121	4122	3141	4131	4132	3151								
JWH VV/H/P/A WRC	081 6134	101 8122	131 8131	171 6151														
TWH S/K/P TWH S/G/P	212	222	242	272	302	342												
WRC	4141	4141	4152	4152	4241	4241												
TWH S/K TWH S/G	212	222	242	272	302	342												
WRC	4141	4141	4152	4152	4241	4241												
TWH VV/H/A	202	262	312	362	412	472	552	612	722	812	982	1062	1232	1352				
WRC	4141	4231	4241	4242	4243	4252	4261	5261	5271	5282	5282	2x4262	2x5261	2x5262				
TWH VV/Y/A TWH VV/J/A	322	342	392	452	492	592	652	732	902	1102	1322							
WRC	4152	4241	4241	4242	4243	4261	5261	5261	5271	5282	2x4262							
TWH VV/Y/A TWH VV/J/A	252-T	302-T	362-T	422-T	502-T	582-T	672-T	782-T	902-T			1342-T						
WRC	4141	4231	4241	4242	4243	4252	4261	5261	5271	5282	5282	2x4262	2x5261	2x5262	2x5281	3x4262		
TWH VV/Y TWH VV/J	322	342	392	452	492	592	652	732	902	1102	1202	1322	1452	1612	1813	2053	2293	2583
WRC	4151	4231	4241	4242	4243	4252	4261	5261	5271	5282	5282	2x4262	2x5261	2x5262	2x5271	2x5281	3x4262	3x5261
TWH/DRTT/H	341	681	1031	1371	1711	2061												
WRC	4242	5271	5282	2x4262	2x5271	2x5282												
TWH/DRTT/Y TWH/DRTT/J	291	391	581	771	871	1161	1541											
WRC	4242	4252	5271	5282	5282	2x4262	2x5282											

TECHNI	$C\Delta I$	DATA -	WRC	3121	±5282
			VVIIV.		=:

MODEL			3121	3131	3132	3133	3134	3141	3151	4111	4121	4122	4131	4132	4141	4151	4152
Fan	Air flow	m³/s	4.67	7.32	7.01	6.56	12.31	15.44	17.86	5.18	10.83	10.37	16.25	15.55	20.73	27.08	25.92
ran	Quantity	n°	2	3	3	3	3	4	5	1	2	2	3	3	4	5	5
Connections	In	Ø mm	42	42	54	54	54	54	80	42	70	70	80	102	102	70	70
Connections	Out	Ø mm	42	42	54	54	54	54	80	42	70	70	80	102	102	70	70
Flootrical	Power supply	V/Ph/Hz							4	00/3/5	0						
Electrical characteristics	Absorbed power	kW	1.32	1.98	1.98	1.98	4.95	6.60	8.25	2.00	4.00	4.00	6.00	6.00	8.00	10.00	10.00
Characteristics	Absorbed current	Α	2.6	3.9	3.9	3.9	9.3	12.4	15.5	4.0	8.0	8.0	12.0	12.0	16.0	20.0	20.0
Sound pressure	STD version (1)	dB(A)	49	51	51	51	57	58	59	49	52	52	53	53	54	55	55
Weights	Transport weight	Kg	145	191	205	245	239	337	516	182	308	326	470	497	646	684	724
vveigins	Operating weight	Kg	160	211	225	265	259	367	566	197	333	351	520	547	706	754	794

MODEL			4231	4232	4241	4242	4243	4251	4252	4261	4262	5261	5262	5271	5281	5282
Fan	Air flow	m³/s	31.96	30.45	44.80	42.62	40.60	53.28	50.75	63.93	65.33	68.50	65.33	76.22	91.33	87.11
Ган	Quantity	n°	6	6	8	8	8	10	10	12	12	12	12	14	16	16
Connections	In	Ø mm	102	2x102	102	102	2x102	2x102	3x102	3x102	3x102	4x80	4x80	6x102	4x102	6x102
Connections	Out	Ø mm	102	2x102	102	102	2x102	2x102	3x102	3x102	3x102	4x80	4x80	6x102	4x102	6x102
Florence	Power supply	V/Ph/Hz			•				400/	3/50						
Electrical characteristics	Absorbed power	kW	12.00	12.00	16.00	16.00	16.00	20.00	20.00	24.00	24.00	24.00	24.00	28.00	32.00	32.00
Characteristics	Absorbed current	А	24.0	24.0	32.0	32.0	32.0	40.0	40.0	48.0	48.0	48.0	48.0	56.0	64.0	64.0
Sound pressure	STD version (1)	dB(A)	56	56	57	57	57	58	58	58	59	59	59	59	60	60
Weights	Transport weight	Kg	860	910	994	1204	1274	1548	1638	1892	3390	3060	3390	3890	3960	4380
vveignts	Operating weight	Kg	950	1000	1094	1304	1374	1658	1748	2032	3530	3360	3690	4240	4360	4780

DIMENSIONS

MODEL			3121	3131	3132	3133	3134	3141	3151	4111	4121	4122	4131	4132	4141	4151	4152
L	STD	mm	2425	3525	3525	3525	3525	4625	5725	1803	3278	3278	4753	4753	6228	7703	7703
W	STD	mm	630	630	630	630	630	630	630	795	795	795	795	795	795	795	795
Н	STD	mm	1098	1098	1098	1098	1098	1098	1098	1272	1272	1272	1272	1272	1272	1272	1272

MODEL			4231	4232	4241	4242	4243	4251	4252	4261	4262	5261	5262	5271	5281	5282
L	STD	mm	4783	4783	6258	6258	6258	7733	7733	9208	9208	6920	6920	8020	9120	9120
W	STD	mm	878	878	878	878	878	878	878	878	878	2350	2350	2350	2350	2350
Н	STD	mm	2322	2322	2322	2322	2322	2322	2322	2322	2322	2450	2450	2450	2450	2450

DIMENSIONAL

WRC 3121÷5262

WRC 5271÷5282

- Sound pressure level measured in free field conditions at 10 m from the unit. According to ISO 3744.
- N.B. Combinations are made at ambient air temperature 35 °C, In-Out water
- temperature 50/45°C (with ethylene glycol at 35%).

 N.B. Clearance areas are specified on installation, use and maintenance manual.

WRC/SL 3122÷5281

SILENCED DRY-COOLERS WITH AXIAL FANS.

The Dry-Coolers with axial fans of the WRC/SL series are designed to be combined with watercooled liquid Chillers (JWH and TWH).

These units, available in three configurations depending on the level of noiselessness required, Standard, Silenced (SL) and Super silenced (SSL), are equipped with latest generation axial fans, with motor fan shrouds having a large radius of curvature to eliminate all the air flow turbulence and with larger plenum to uniform the air distribution on the cooling coil.

The units, except the V shaped ones, can be installed with either horizontal or vertical air delivery, as needed.

VERSION

WRC/SL

Silenced unit

FEATURES

- Frame in pre-painted galvanised steel casework.
- The cowlings of the motorfans are made with a wide bending radius to eliminate any turbulence in the air flow.
- Heat exchanger with fins cut and special louver configuration to give the best external coefficient
 of heat exchange and threated warer connections.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

SD Wiring integrated in branch circuit box

FR Fan speed control

LOOSE ACCESSORIES:

VV Supports for vertical air flow versions

COMBIN	IATIC	NS																
JWH S/K/P JWH S/G/P	051	061	071	081	091	101	111	131	152	172								
WRC/SL	3122	3131	3141	4121	4131	3151	3152	4132	4142	4142								
JWH S/K JWH S/G	051	061	071	081	091	101	111	131	152	172								
WRC/SL	3122	3131	3141	4121	4131	3151	3152	4132	4142	4142								
JWH VV/H/P/A WRC/SL	081 8121	101 6151	131 8132	171 8142														
TWH S/K/P TWH S/G/P	212	222	242	272	302	342												
WRC/SL	4152	4152	4231	4231	4242	4243												
TWH S/K TWH S/G	212	222	242	272	302	342												
WRC/SL	4152	4152	4231	4231	4242	4243												
TWH VV/H/A	202	262	312	362	412	472	552	612	722	812	982	1062	1232	1352				
WRC/SL	4152	4241	4242	4251	4252	4262	5261	5271	5281	2x4252	2x4261	2x5262	2x5271	2x5272				
TWH VV/Y/A TWH VV/J/A	322	342	392	452	492	592	652	732	902	1102	1322							
WRC/SL	4231	4242	4243	4251	4252	5261	5271	5271	5281	2x4261	2x5262							
TWH VV/Y/A TWH VV/J/A	252-T	302-T	362-T	422-T	502-T	582-T	672-T	782-T		1042-T								
WRC/SL	4152	4241	4242	4251	4252	4262	5261	5271	5281	2x4252	2x4261	2x5262	2x5271	2x5272	3x5261	3x5262		
TWH VV/Y TWH VV/J	322	342	392	452	492	592	652	732	902	1102	1202	1322	1452	1612	1813	2053	2293	2583
WRC/SL	4152	4241	4242	4251	4252	4262	5261	5271	5281	2x4252	2x4261	2x5262	2x5271	2x5272	2x5281	3x5261	3x5262	3x5271
TWH/DRTT/H	341	681	1031	1371	1711	2061												
WRC/SL	4251	5281	2x4261	2x5262	2x5281	4x4261												
TWH/DRTT/Y TWH/DRTT/J	291	391	581	771	871	1161	1541											
WRC/SL	4251	4262	5281	2x4261	2x4261	2x5262	4x4261											

TECHNICAL DATA - WRC/SL 3122÷5281

MODEL			3122	3131	3132	3141	3151	3152	4121	4131	4132	4141	4142	4151	4152
	Air flow	m³/s	4.67	6.01	5.66	8.01	9.04	10.90	8.24	13.10	11.78	16.49	15.71	20.61	19.64
Fan	Quantity	n°	2	3	3	4	5	5	2	3	3	4	4	5	5
Connections	In	Ø mm	42	54	54	54	70	80	54	70	70	80	102	102	102
Connections	Out	Ø mm	42	54	54	54	70	80	54	70	70	80	102	102	102
Florenical	Power supply	V/Ph/Hz							100/3/50)					
Electrical characteristics	Absorbed power	kW	1.32	1.20	1.20	1.60	2.00	3.30	2.50	3.75	3.75	5.00	5.00	6.25	6.25
Cilaiacteristics	Absorbed current	А	2.6	2.1	2.1	2.8	3.5	6.5	4.6	6.9	6.9	9.2	9.2	11.5	11.5
Sound pressure	SL version (1)	dB(A)	49	44	44	45	46	52	45	47	47	48	48	49	49
Weights	Transport weight	Kg	145	145	145	145	388	448	308	388	497	611	646	684	724
vveigiits	Operating weight	Kg	160	165	165	175	438	498	333	438	547	671	706	754	794

MODEL			4231	4241	4242	4243	4251	4252	4261	4262	5261	5262	5271	5272	5281
Fan	Air flow	m³/s	21.95	34.90	32.26	29.27	40.32	36.58	48.39	43.90	52.33	49.08	61.06	57.26	65.44
Ган	Quantity	n°	6	8	8	8	10	10	12	12	12	12	14	14	16
Connections	In	Ø mm	2×102	102	102	102	2×102	2x102	3x102	3x102	2x102	2x102	2x102	4x80	4x80
Connections	Out	Ø mm	2x102	102	102	102	2x102	2x102	3x102	3x102	2x102	2x102	2x102	4x80	4x80
EL .: I	Power supply	V/Ph/Hz							100/3/50)					
Electrical characteristics	Absorbed power	kW	7.50	10.00	10.00	10.00	12.50	12.50	15.00	15.00	15.00	15.00	17.50	17.50	20.00
Characteristics	Absorbed current	А	13.8	18.4	18.4	18.4	23.0	23.0	27.6	27.6	27.6	27.6	32.2	32.2	36.8
Sound pressure	SL version (1)	dB(A)	50	51	51	51	51	51	52	52	52	52	53	53	53
Weights	Transport weight	Kg	910	994	1204	1274	1548	1638	1892	2200	3060	3390	3510	3890	4380
vveignts	Operating weight	Kg	1000	1094	1304	1374	1658	1748	2032	2340	3360	3690	3860	4240	4780

DIMENSIONS

MODEL			3122	3131	3132	3141	3151	3152	4121	4131	4132	4141	4142	4151	4152
L	SL	mm	2425	3525	3525	4625	5725	5725	3278	4753	4753	6228	6228	7703	7703
W	SL	mm	630	630	630	630	630	630	795	795	795	795	795	795	795
Н	SL	mm	1098	1098	1098	1098	1098	1098	1272	1272	1272	1272	1272	1272	1272
MODEL			4231	4241	4242	4243	4251	4252	4261	4262	5261	5262	5271	5272	5281
L	SL	mm	4783	6258	6258	6258	7733	7733	9208	9208	6920	6920	8020	8020	9120
W	SL	mm	878	878	878	878	878	878	878	878	2350	2350	2350	2350	2350
Н	SL	mm	2322	2322	2322	2322	2322	2322	2322	2322	2450	2450	2450	2450	2450

DIMENSIONAL

WRC/SL 3122÷4262

WRC/SL 5261÷5281

- Sound pressure level measured in free field conditions at 10 m from the unit. According to ISO 3744.
- N.B. Combinations are made at ambient air temperature 35 °C, In-Out water temperature 50/45°C (with ethylene glycol at 35%)
- temperature $50/45^{\circ}$ C (with ethylene glycol at 35%). N.B. Clearance areas are specified on installation, use and maintenance manual.

WRC/SSL 3132÷5282

SUPER SILENCED DRY-COOLERS WITH AXIAL FANS.

The Dry-Coolers with axial fans of the WRC/SSL series are designed to be combined with watercooled liquid Chillers (JWH and TWH).

These units, available in three configurations depending on the level of noiselessness required, Standard, Silenced (SL) and Super silenced (SSL), are equipped with latest generation axial fans, with motor fan shrouds having a large radius of curvature to eliminate all the air flow turbulence and with larger plenum to uniform the air distribution on the cooling coil.

The units, except the V shaped ones, can be installed with either horizontal or vertical air delivery, as needed.

VERSION

WRC/SSL

Super silenced unit

FEATURES

- Frame in pre-painted galvanised steel casework.
- The cowlings of the motorfans are made with a wide bending radius to eliminate any turbulence in the air flow.
- Heat exchanger with fins cut and special louver configuration to give the best external coefficient of heat exchange and threated warer connections.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

SD Wiring integrated in branch circuit box

FR Fan speed control

LOOSE ACCESSORIES:

VV Supports for vertical air flow versions

COMBIN	IATIC	ONS																
JWH S/K/P JWH S/G/P	051	061	071	081	091	101	111	131	152	172								
WRC/SSL	3132	3141	3151	4131	4132	4141	4151	4152	4231	4241								
JWH S/K JWH S/G	051	061	071	081	091	101	111	131	152	172								
WRC/SSL	3132	3141	3151	4131	4132	4141	4151	4152	4231	4241								
JWH VV/H/P/A WRC/SSL	081 8131	101 8141	131 8152	171 8241														
TWH S/K/P TWH S/G/P	212	222	242	272	302	342												
WRC/SSL	4242	4242	4252	4252	4262	4262												
TWH S/K TWH S/G	212	222	242	272	302	342												
WRC/SSL	4242	4242	4252	4252	4262	4262												
TWH VV/H/A	202	262	312	362	412	472	552	612	722	812	982	1062	1232	1352				
WRC/SSL	4242	4253	4262	4264	5271	5282	2x4261	2x4262	2x5261	2x5282	2x5282	3x4264	2x5271	2x5282				
TWH VV/Y/A TWH VV/J/A	322	342	392	452	492	592	652	732	902	1102	1322							
WRC/SSL	4252	4262	4262	4264	5271	2x4261	2x4262	2x4263	2x5261	2x5282	3x4264							
TWH VV/Y/A TWH VV/J/A	252-T	302-T	362-T	422-T	502-T	582-T	672-T	782-T	902-T	1042-T	1182-T	1342-T	1492-T	1662-T	1872-T	2122-T		
WRC/SSL	4242	4253	4262	4264	5271	5282	2x4261	2x4262	2x5261	2x5282	2x5282	3x4264	2x5271	2x5282	4x5261	4x5271		
TWH VV/Y TWH VV/J	322	342	392	452	492	592	652	732	902	1102	1202	1322	1452	1612	1813	2053	2293	2583
WRC/SSL	4251	4253	4262	4264	5271	5282	2x4261	2x4262	2x5261	2x5282	2x5282	3x4264	2x5271	2x5282	3x5282	4x5261	4x5271	4x5282
TWH/DRTT/H	341	681	1031	1371	1711	2061												
WRC/SSL	4264	2x5261	2x5282	3x4264	4x4264	4x5282												
TWH/DRTT/Y TWH/DRTT/J	291	391	581	771	871	1161	1541											
WRC/SSL	4264	5282	2x5261	2x5282	2x5282	3x4264	4x5282											

TECHNICAL DATA - WRC/SSL 3132÷5282

MODEL			3132	3141	3142	3151	3152	4131	4132	4141	4151	4152	4231	4241
Fan	Air flow	m³/s	3.83	5.51	5.11	6.88	6.38	7.80	7.64	9.87	13.11	12.33	15.58	20.78
ran	Quantity	n°	3	4	4	5	5	3	3	4	5	5	6	8
Connections	In	Ø mm	54	54	54	70	70	70	70	80	80	80	102	102
Connections	Out	Ø mm	54	54	54	70	70	70	70	80	80	80	102	102
Florenical	Power supply	V/Ph/Hz						400,	/3/50					
Electrical characteristics	Absorbed power	kW	0.57	0.76	0.76	0.95	0.95	1.41	1.41	1.48	1.85	1.85	2.22	2.96
Cilaiacteristics	Absorbed current	А	1.1	1.5	1.5	1.9	1.9	3.0	3.0	4.8	6.0	6.0	7.2	9.6
Sound pressure	SSL version (1)	dB(A)	35	36	36	37	37	38	38	38	38	38	39	40
Weights	Transport weight	Kg	191	256	273	332	363	470	497	611	562	684	710	994
vveigiits	Operating weight	Kg	211	286	303	382	413	520	547	671	632	754	800	1094

MODEL			4242	4251	4252	4253	4261	4262	4263	4264	5261	5271	5281	5282
Fan	Air flow	m³/s	19.53	25.97	24.40	24.40	31.17	29.29	30.56	27.35	31.50	36.75	39.66	36.77
Гап	Quantity	n°	8	10	10	10	12	12	12	12	12	14	16	16
Connections	In	Ø mm	102	102	2x102	102	102	2x102	3x102	2x102	2x102	2x102	2x102	4x80
Connections	Out	Ømm	102	102	2x102	102	102	2x102	3x102	2x102	2x102	2x102	2x102	4x80
Florence	Power supply	V/Ph/Hz	2 400/3/50											
Electrical characteristics	Absorbed power	kW	2.96	3.70	3.70	3.70	4.40	4.40	5.64	5.64	4.44	5.18	7.52	7.52
Characteristics	Absorbed current	Α	9.6	12.0	12.0	12.0	14.4	14.4	12.0	12.0	14.4	16.8	16.0	16.0
Sound pressure	SSL version (1)	dB(A)	40	41	41	41	42	42	43	43	42	42	44	44
Weights	Transport weight	Kg	1204	1278	1548	1548	1562	1892	1892	2200	3060	3510	3960	4380
vveignts	Operating weight	Kg	1304	1388	1658	1658	1702	2032	2032	2340	3360	3860	4360	4780

DIMENSIONS

DIIVILIA														
MODEL			3132	3141	3142	3151	3152	4131	4132	4141	4151	4152	4231	4241
L	SSL	mm	3525	4625	4625	5725	5725	4753	4753	6228	7703	7703	4783	6258
W	SSL	mm	630	630	630	630	630	795	795	795	795	795	878	878
Н	SSL	mm	1098	1098	1098	1098	1098	1272	1272	1272	1272	1272	2322	2322
MODEL			4242	4251	4252	4253	4261	4262	4263	4264	5261	5271	5281	5282
L	SSL	mm	6258	7733	7733	7733	9208	9208	9208	9208	6920	8020	9120	9120
W	SSL	mm	878	878	878	878	878	878	878	878	2350	2350	2350	2350
Н	SSL	mm	2322	2322	2322	2322	2322	2322	2322	2322	2450	2450	2450	2450

DIMENSIONAL

WRC/SSL 3132÷4264

WRC/SSL 5261÷5282

- Sound pressure level measured in free field conditions at 10 m from the unit. According to ISO 3744.
- N.B. Combinations are made at ambient air temperature 35 °C, In-Out water temperature 50/45°C (with ethylene glycol at 35%)
- temperature $50/45^{\circ}$ C (with ethylene glycol at 35%). N.B. Clearance areas are specified on installation, use and maintenance manual.

MR 50÷80

REMOTE HYDRONIC MODULES.

The Remote Hydronic Modules of the MR 50÷80 series are intended to solve technical problems resulting from thermal inertia in air conditioning systems for both residential and industrial use. Installing a tank for cooled water allows units to reduce the operating cycles of the compressors, thus extending the useful life of the machines. It also results in a greater capacity of the system itself, a remarkable operational saving and a greater flexibility, being able to work with temperatures other than the design temperatures.

30 I AND 70 I

VERSION

MR 50	
30 I tank	
MR 80	
70 I tank	

FEATURES

- Self-supporting frame in peraluman. Easy to remove front panel allows access to the inside of the
 unit for maintenance and other necessary operations.
 - Water circuit includes: insulated inertial tank, safety valve, automatic air release valves, expansion vessel inserted in the storage tank, gauge, air vent valve, plant charge and water drain.

TECHNICAL DATA - MR 50÷80								
MODEL			50	80				
	Tank water volume	I	30	70				
Water circuit	Expansion vessel	I	3	3				
vvater circuit	Safety valve	bar	3	3				
	Water connections	"G	1"	1"				
Weights	Transport weight	Kg	28	36				
vveignts	Operating weight	Kg	78	116				

DIMEN	SIONS			
MODEL			50	80
L	STD	mm	240	340
W	STD	mm	320	500
Н	STD	mm	1100	1270

CLEARANCE ARE	A	
MR 50÷80 600 600 600 800	ANK	ACTIC
	B	9
	O W	0 0

REMOTE HYDRONIC MODULES WITH PUMP KIT.

The Remote Hydronic Modules with pump kit of the MR 1500÷2500 series are designed to solve technical problems resulting from thermal inertia in air conditioning systems for both residential and industrial use.

Installing a tank for cooled water allows units to reduce the operating cycles of the compressors, thus extending the useful life of the machines. It also results in a greater capacity of the system itself, a remarkable operational saving and a greater flexibility, being able to work with temperatures other than the design temperatures. The tanks are available with a capacity of 1500 and 2500 litres, with circulating pump or double circulating pump accessory and are complete with all the components necessary for a quick on-site installation.

1500 | AND 2500 |

VERSION

MR 1500

With 1500 I tank

MR 2500

With 2500 I tank

FEATURES

- Self-supporting galvanized steel frame further protected with polyester powder painting. Easy
 to remove panels allow access to the inside of the unit for maintenance and other necessary
 operations.
- Electrical board. Present only with the accessories circulating pump, it includes main switch with
 door safety interlock; automatic switches for protection of circulating pumps, of secondary circuit
 and of antifreeeze heaters, signalling lamps, interface relay and clamps for external connections.
- Water circuit includes: insulated inertial tank, safety valve, automatic air release valves, expansion
 vessel, gauge, automatic filling group, plant charge and discharge water shut-off valve.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

PU1-PU5 Single circulating pump
PD1-PD5 Double circulating pump
FA Antifreeze heater for tank
FUM Antifreeze heater for tank, single

pump and pipes

FDM Antifreeze heater for tank, double

pump and pipes

ЛODEL			1500	2500
	Tank water volume	I	1500	2500
	Expansion vessel	I	2x25	3x25
ump kit	Safety valve	bar	3	3
	Water connections	"G	4"	4"
	STD version	Kg	470	520
	STD+PU1	Kg	513	565
	STD+PU2	Kg	569	617
	STD+PU3	Kg	569	617
	STD+PU4	Kg	634	686
ansport weight	STD+PU5	Kg	740	796
	STD+PD1	Kg	586	638
	STD+PD2	Kg	696	740
	STD+PD3	Kg	696	740
	STD+PD4	Kg	826	878
	STD+PD5	Kg	1055	990
	STD version	Kg	1970	3020
	STD+PU1	Kg	2014	3066
	STD+PU2	Kg	2070	3118
	STD+PU3	Kg	2070	3118
	STD+PU4	Kg	2135	3187
perating weight	STD+PU5	Kg	2241	3297
	STD+PD1	Kg	2088	3140
	STD+PD2	Kg	2198	3242
	STD+PD3	Kg	2198	3242
	STD+PD4	Kg	2328	3380
	STD+PD5	Kg	2557	3492
JMPS ELECTRI	CAL CHARACTERISTICS			
	PU1	kW	3	3
	PU2	kW	5.5	5.5
	PU3	kW	7.5	7.5
	PU4	kW	15	15
ominal	PU5	kW	22	22
sorbed power	PD1	kW	6	6
·	PD2	kW	11	11
	PD3	kW	15	15
	PD4	kW	30	30
	PD5	kW	44	44
	PU1	A	5.6	5.6
	PU2	A	11	11
	PU3	A	14.6	14.6
	PU4	A	28.6	28.6
ax. running	PU5	A	40.3	40.3
rrent	PD1	A	11.2	11.2
	PD2	A	22	22
	PD3	A	29.2	29.2
	PD4	A	57.2	57.2
	PD5	A	80.6	80.6

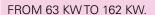
DIV	$I \subset I$	ICIC	NIS.
11111	леп	1.51L	m > 1

MODEL			1500	2500
L	STD	mm	1900	1900
W	STD	mm	2260	2260
Н	STD	mm	1780	1780

CLEARANCE AREA

MR 1500÷2500

800 800 800 800


Packaged Roof Top units with single or double skin for medium and wide areas.

URT/EC/WP 051÷131 S/K	164 - 165
URT/EC 051÷212 S/IK	166 - 167
URT/EC/MS 051÷212 S/IK	168 - 169
URT/EC/ECO 051÷212 S/IK	170 - 171
URT/EC/ECO/REC-FX 051÷212 S/IK	172 - 173
URT/EC/ECO/REC-WH 051÷212 S/IK	174 - 175
URT/EC 051÷212 S/K	176 - 177
URT/EC/MS 051÷212 S/K	178 - 179
URT/EC/ECO 051÷212 S/K	180 - 181
URT/EC/ECO/REC-FX 051÷212 S/K	182 - 183
URT/EC/ECO/REC-WH 051÷212 S/K	184 - 185

VERSION URT/EC/WP

Reversible Heat Pump

URT/EC/WP/MS

Reversible Heat Pump with Free-Cooling section (2 dampers)

URT/EC/WP/ECO

Reversible Heat Pump with Economizer (Free-Cooling section with 3 dampers)

URT/EC/WP 051÷131 S/K

SINGLE-SKIN PACKAGED ROOF TOP UNITS WITH SCROLL COMPRESSORS AND EC INVERTER PLUG-FANS.

The single skin packaged Roof Top units of the **AIRPLUS** series are the ideal solution for air conditioning of medium-wide surfaces such as shopping malls and restaurants, canteens or for industrial areas. The units are equipped with Scroll compressors with R410A refrigerant, and are available in Reversible Heat Pump version also with **Free-Cooling** with 2 or 3 dampers. AIRPLUS is equipped with **EC Inverter Plug-Fans** with high energy efficiency backward blades both for intake as well as delivery, managed by an electronic control adjusting fans' rotational speed to adapt the air flow to the system capacity. The unit can easily adapt to diverse engineering needs thanks to the possibility of selecting onsite the air flow direction, choosing among 8 positions of both intake and output air direction. The unit's structure is made of a frame with extruded aluminium profiles and prepainted panels, and features flat type filters with varying efficiency levels, maintaining high air quality and high comfort.

The unit can be equipped, as an option, with the innovative **Thermodynamic Coil-Boost Heat Recovery** to achieve better performance and efficiency both in cooling and heating up to 15%.

The units are compliant to the ErP Regulation with ECA accessory (EC Inverter fans on condensing section).

FEATURES

- Structure of base perimeter made of galvanised steel sheet elements. The frame is made of extruded aluminium alloy profiles connected by 3 way joints. The assembling of the base to the frame is of dual support and grants the walking on the base panels installation of which is effected without sticking out screws. The perimeter panels are realised in prepainted sheet steel, they can be easily removed and allow access inside the unit for maintenance and repair operations.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- · Condenser and evaporator with copper tube and aluminium finned coil.
- High efficiency delivery & intake reverse blade EC INVERTER PLUG-FANS, with electronic speed control to easily adapt to the system characteristics.
- The air treatment section has removable panels allowing the selection of intake and output configurations that adapt to the specific needs of the system.
- R410A refrigerant.
- Electrical board includes: door interlocking isolator, fuses, thermal protection relays on compressors, thermocontacts for the fans of the condensing section and contactors for the fan motors of the air handling section.
- Microprocessor for the automatic control of the unit.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM	Automatic circuit breakers
SL	Unit silencement
THCB	Thermodynamic Coil-Boost Heat
	Recovery (ECO only)
RFM	Cooling circuit shut-off valve on
	discharge line
RFL	Cooling circuit shut-off valve on
	liquid line
ECA	EC Inverter fans on condensing section
CT	Condensing control down to 0 °C
CC	Condensing control down to -20 °C
TXC	Condensing coil with pre-coated fins
TXE	Evaporating coil with pre-coated fins

FT	Plate filters efficiency M6-F7-F8
AT	Constant air flow regulation control
AT/P	Constant available static pressure
	regulation control
WS2	Hot water coil with 3-Way valve
EHG	Electrical heater with step regulation
CH	Enthalpic control (ECO only)
SQ	Air quality sensor
SSA	Active sanitation systems
PF	Filter differential pressure switch
IS	Modbus RTU protocol, RS485 serial
	interface
IST	Modbus TCP/IP protocol, Ethernet port
ISB	BACnet MSTP protocol, RS485 serial

interface

ISBT	BACnet TCP/IP protocol, Ethernet port
ISL	LonWorks protocol, FTT-10 serial
	interface
ISS	SNMP protocol, Ethernet port
CP	Potential free contacts

LOOSE ACCESSORIES:

MN	High and low pressure gauges
CS	Dampers rain hood
CR	Remote control panel
RP	Coils protection metallic guards
AG	Rubber shock absorbers

	AL DATA - URT/EC	/ V V I O	<u> </u>							
MODEL			051	061	071	081	091	101	111	131
Heating	Heating capacity (1)	kW	62.9	71.1	81.2	92.9	107	123	142	162
rieating	Absorbed power (1).(2)	kW	18.6	21.7	25.2	28.1	31.0	38.1	42.6	50.1
Heating	SCOP with ECA accessory (3)		3.24	3.26	3.26	3.3	3.3	3.26	3.28	3.28
(EN14511)	Energy Efficiency with ECA accessory (3)	%	127	127	127	129	129	127	128	128
Cooling	Cooling capacity (4)	kW	64.9	73.8	85.6	96.8	111	128	147	171
Cooling	Absorbed power (2).(4)	kW	20.9	24.2	27.2	30.0	35.4	41.1	45.9	54.1
Coolina	SEER with ECA accessory (5)		3.53	3.54	3.54	3.58	3.55	3.57	3.65	3.63
(EN14511)	Energy Efficiency with ECA accessory (5)	%	138	139	139	140	139	140	143	142
	Air flow	m³/s	2.50	2.78	3.34	3.61	4.44	4.44	5.83	6.67
Air treatment	Available static pressure	Pa	200	200	200	200	200	200	200	200
section	Fan	n°	1	1	1	1	2	2	2	2
	Filter	Tipo	G4	G4	G4	G4	G4	G4	G4	G4
	Air flow	m³/s	2.00	2.22	2.67	2.89	3.55	3.55	4.72	5.33
Air intake section	Available static pressure	Pa	100	100	100	100	100	100	100	100
	Fan	n°	1	1	1	1	1	1	1	1
	Compressor	n°	2	2	2	2	2	3	3	3
Condensing	Refrigerant circuits	n°	1	1	1	1	1	1	1	1
section	Capacity steps	n°			2		2		3	
	Heating capacity (6)	kW	65.4	68.6	74.9	78.9	84.9	84.9	103	110
	Air pressure drops	Pa	16	19	26	30	43	43	68	86
Hot water coil	Water flow (6)	l/s	1.56	1.64	1.79	1.89	2.03	2.03	2.46	2.62
	Water connections	"G	2	2	2	2	2	2	2	2
	Power supply	V/Ph/Hz		400/	3/50			400/	/3/50	
	Heating capacity	kW	21	27	27	27	40	40	40	48
Electrical heater	Max. absorbed current	Α	30	39	39	39	59	59	59	69
	Steps	n°	2	2	2	2	4	4	4	4
	Power supply	V/Ph/Hz		400/	3/50			400/	/3/50	
Electrical	Max. running current	Α	53	56	65	69	79	91	110	131
characteristics	Max. starting current	А	190	165	188	201	208	215	242	260
Sound pressure	STD/MS/ECO versions (7)	dB(A)	56	56	60	60	60	60	61	61
	Transport weight	Kg	1280	1315	1370	1380	1475	1570	1920	2020
Weights	Operating weight	Kg	1265	1300	1355	1365	1460	1555	1900	2000

MS - ECO

MS. Free-Cooling section with 2 dampers - Further to components of the basic version, includes two wing profile aluminium dampers with spring return servomotors (dampers with opposite movement).

ECO. Free-Cooling section with 3 dampers - Further to components of the basic version, includes return air EC INVERTER PLUG-FANS; motorized wing profile aluminium dampers (dampers with opposite movement). Exhaust, recirculation and fresh air are controlled through the microprocessor fitted in the base unit; this microprocessor, according to the temperature of the return and fresh air, modulates the opening of the dampers and controls the cooling circuit capacity steps to ensure comfort conditions of the handled air. The adjustments of the ECO versions are automatically controlled both in free-cooling and free-heating mode.

DIMENSIONS

MOD	EL		051	061	071	081	091	101	111	131
L	STD/MS/ECO	mm	2930	2930	2930	2930	2930	2930	3930	3930
W	STD/MS/ECO	mm	2200	2200	2200	2200	2200	2200	2200	2200
Н	STD/MS/ECO	mm	2370	2370	2370	2370	2370	2370	2370	2370

CLEARANCE AREA

URT/EC/WP 051÷131 S/K 1000 1800 1000 1000

- Condenser inlet air temperature 20 °C, ambient air temperature 7 °C d.b./6 °C w.b.
- 2. Excluded the power absorbed by fans of air treatment section.
- Seasonal energy efficiency of heating with average climatic conditions.

 According to EU Regulation n. 2016/2281.

 Evaporator inlet air temperature 27 °C d.b./19 °C w.b.; ambient air temperature 35 °C. 3.
- 4.
- Seasonal energy efficiency of cooling. According to EU Regulation n. 2016/2281.
- Inlet air temperature 20 °C, water temperature 70/60 °C.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of MS and ECO versions are specified on technical brochure.

URT/EC 051÷212 S/IK

DOUBLE SKIN PACKAGED ROOF TOP UNITS WITH INVERTER SCROLL COMPRESSORS AND EC INVERTER PLUG-FANS.

The double skin packaged Roof Top units of the **AIRMAXI** series are the ideal solution for air conditioning of wide surfaces such as shopping malls and restaurants, canteens or for industrial areas. These units feature Inverter Scroll compressor with R410A refrigerant and **EC Inverter Plug-Fans.** The highest efficiency at partial loads is guaranteed by the Inverter Scroll technology on compressor since its power is varied proportionally to the requested thermal load. Furthermore, the EC Inverter Plug-Fans with high energy efficiency backward blades are managed by an electronic control adjusting fans' rotational speed to adapt the air flow to the system capacity.

Equipped with extruded aluminium alloy sections and 50mm-thick sandwich panelling, these units are available in Cooling only and Reversible Heat Pump version.

The flat or pocket filters help to keep the air quality at a suitable level in order to guarantee appropriate hygiene standards.

The units are compliant to the ErP Regulation.

FROM 58 KW TO 252 KW.

VERSION

URT/EC

Cooling only with EC Inverter Plug-Fans

URT/EC/WP

Reversible heat pump with EC Inverter Plug-Fans

FEATURES

- Structure of base perimeter made of steel sheet elements galvanised. Frame made of extruded aluminium alloy profiles connected by 3 way joints. Assembling of the base to the frame is of dual support and grants the walking on the base panels installation without sticking out screws. 50mm thick sandwich panels made of prepainted steel sheet; water proofing granted by gaskets having shape memory for perfect seal up even after repeated removals. Section connection is effected by means of assembling conic stirrups and water proofing is granted by gaskets.
- DC INVERTER Scroll and ON-OFF Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Condenser and evaporator with copper tube and aluminium finned coil.
- High efficiency delivery reverse blade EC INVERTER PLUG-FANS, with electronic speed control to easily adapt to the system characteristics.
- Electronic expansion valve.
- R410A refrigerant.
- Electrical board includes: door interlocking isolator, fuses, thermal protection relays on compressors, thermocontacts for the fans of the condensing section and contactors for the fan motors of the air handling section.
- Electronic proportional device to decrease the sound level, with a continuous regulation of the fan speed. This device also allows the cooling functioning of the unit by external temperature till -20°C.
- Microprocessor for the automatic control of the unit.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakersSL Unit silencement

RFM Cooling circuit shut-off valve on discharge line

RFL Cooling circuit shut-off valve on liquid line

ECA EC Inverter fans on condensing section TXC Condensing coil with pre-coated fins

TXE Evaporating coil with pre-coated fins FT/M Soft bag filters efficiency M6-F7-F8 FT/R Rigid bag filters efficiency M6-F7-F8

FT/E Electrostatic filters

AT Constant air flow regulation control
AT/P Constant available static pressure
regulation control
WS2 Hot water coil with 3-Way valve
EHG Electrical heater with step regulation
SQ Air quality sensor

SSA Active sanitation systems
PF Filter differential pressure switch
IS Modbus RTU protocol, RS485 serial interface

IST Modbus TCP/IP protocol, Ethernet port ISB BACnet MSTP protocol, RS485 serial

ISBT BACnet TCP/IP protocol, Ethernet port

ISL LonWorks protocol, FTT-10 serial interface

ISS SNMP protocol, Ethernet port CP Potential free contacts

RP Coils protection metallic guards

LOOSE ACCESSORIES:

MN High and low pressure gauges CR Remote control panel AG Rubber shock absorbers

ErP SEER 2021

TECHNIC	AL DATA - URT/E	C 051÷	212 S	S/IK									
MODEL			051	061	071	081	091	101	111	131	152	172	212
0 1:	Cooling capacity (1)	kW	57.9	65.8	77.6	87.4	98.6	113	129	145	168	198	252
Cooling	Absorbed power (1),(2)	kW	19.4	21.8	24.6	26.2	30.8	37.8	40.4	43.3	54.6	61.5	85.1
Cooling	SEER (3)		4.57	4.61	4.78	4.81	4.69	4.53	4.52	4.66	4.42	4.29	4.31
(EN14511)	Energy Efficiency (3)	%	180	181	188	189	185	178	178	183	174	169	169
Llaatina	Heating capacity (4)	kW	60.2	67.2	76.8	88.6	101	115	133	151	173	204	262
Heating	Absorbed power (2),(4)	kW	16.8	17.9	20.2	22.8	25.2	32.2	34.0	40.0	45.7	50.4	70.5
Heating	SCOP (5)		3.46	3.51	3.62	3.60	3.57	3.40	3.44	3.52	3.56	3.55	3.47
(EN14511)	Energy Efficiency (5)	%	135	137	142	141	140	133	135	138	139	139	136
	Air flow	m³/s	2.67	3.30	4.05	4.05	4.84	5.49	6.32	6.32	8.20	9.79	12.31
Air treatment	Available static pressure	Pa	250	250	250	250	250	250	250	250	250	250	250
section	Fan	n°	1	1	2	2	2	2	2	2	2	4	4
	Filter	Tipo	G4	G4	G4	G4	G4	G4	G4	G4	G4	G4	G4
0 1 :	Compressor	n°	2	2	2	2	2	2	2	2	4	4	4
Condensing	Refrigerant circuits	n°	1	1	1	1	1	1	1	1	2	2	2
section —	Capacity steps	n°	Stepless								Stepless		
	Heating capacity (6)	kW	85	100	125	125	150	175	200	200	250	300	350
	Air pressure drops	Pa	30	31	31	31	31	30	36	36	35	35	57
Hot water coil	Water flow (6)	l/s	2.03	2.39	2.99	2.99	3.58	4.18	4.78	4.78	5.97	7.17	8.36
	Water pressure drops	kPa	45	47	48	48	49	44	51	51	53	57	45
	Water connections	"G	1"1/2	1"1/2	1"1/2	1″½	1"1/2	2"	2"	2"	2"	2 ½"	2 ½"
	Power supply	V/Ph/Hz			400/	/3/50					400/3/50)	
Electrical heater	Heating capacity	kW	15	21	27	27	27	41	41	41	41	48	55
Electrical fleater	Max. absorbed current	А	22	30	39	39	39	59	59	59	59	69	79
	Steps	n°	2	2	2	2	2	4	4	4	4	4	4
Florenical	Power supply	V/Ph/Hz			400/	/3/50					400/3/50)	
characteristics +	Max. running current	А	46	47	56	60	69	88	93	102	126	148	170
Characteristics	Max. starting current	А	169	169	179	192	236	212	225	269	258	315	344
Sound pressure (7)	dB(A)	57	57	57	57	57	58	59	59	60	60	61
\\/aimhta	Transport weight	Kg	990	1050	1150	1250	1260	1450	1810	1860	2230	2400	3180
Weights	Operating weight	Kg	975	1035	1135	1235	1245	1430	1790	1840	2210	2380	3150

COMPLEMENTARY SECTIONS

 UM Section with preparation for Humidifier UM/EN Section Humidifier with electrodes immersed

F/CD Condensation endothermic hot air generator with modulating gas burner

DIMENSIONS

MODEL			051	061	071	081	091	101	111	131	152	172	212
L	STD	mm	2980	3080	3190	3190	3290	3770	4500	4500	5150	5300	7370
W	STD	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	STD	mm	2100	2340	2340	2340	2340	2340	2340	2340	2340	2510	2510

CLEARANCE AREA

URT/EC 051÷101 S/IK 800 1700 800 1700 URT/EC 111÷212 S/IK 1000 | 1700 | 1000 | 1700

- Evaporator inlet air temperature 27 °C d.b./19 °C w.b.; ambient air temperature 35 °C.
- Excluded the power absorbed by fans of air treatment section.
- 3. 4.
- Seasonal energy efficiency of cooling. According to EU Regulation n. 2016/2281. Condenser inlet air temperature 20 °C, ambient air temperature 7 °C d.b./6 °C w.b. Seasonal energy efficiency of heating with average climatic conditions. According to EU Regulation n. 2016/2281. Inlet air temperature 20 °C, water temperature 70/60 °C. 5.
- 6.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of WP version are specified on technical brochure.

URT/EC/MS 051+212 S/IK

DOUBLE SKIN PACKAGED ROOF TOP UNITS WITH INVERTER SCROLL COMPRESSORS, EC INVERTER PLUG-FANS AND MIXING BOX.

The double skin packaged Roof Top units of the AIRMAXI series are the ideal solution for air conditioning of wide surfaces such as shopping malls and restaurants, canteens or for industrial areas. These units feature Inverter Scroll compressor with R410A refrigerant and EC Inverter Plug-Fans. The highest efficiency at partial loads is guaranteed by the Inverter Scroll technology on compressor since its power is varied proportionally to the requested thermal load. Furthermore, the EC Inverter Plug-Fans with high energy efficiency backward blades are managed by an electronic control adjusting fans' rotational speed to adapt the air flow to the system capacity.

Equipped with extruded aluminium alloy sections and 50mm-thick sandwich panelling, these units are available in Cooling only and Reversible Heat Pump version.

The flat or pocket filters help to keep the air quality at a suitable level in order to guarantee appropriate hygiene standards.

The MS units have an high level of modularity and adaptability to every plant-engineering need: these units feature, in addition to the basic sections, a MIXING BOX.

The units are compliant to the ErP Regulation.

FROM 58 KW TO 252 KW.

VERSION

URT/EC/MS

Cooling only with EC Inverter Plug-Fans and Mixing Box

URT/EC/WP/MS

Reversible Heat Pump with EC Inverter Plug-Fans and Mixing Box

FEATURES

- Structure of base perimeter made of steel sheet elements galvanised. Frame made of extruded aluminium alloy profiles connected by 3 way joints. Assembling of the base to the frame is of dual support and grants the walking on the base panels installation without sticking out screws. 50mm thick sandwich panels made of prepainted steel sheet; water proofing granted by gaskets having shape memory for perfect seal up even after repeated removals. Section connection is effected by means of assembling conic stirrups and water proofing is granted by gaskets.
- DC INVERTER Scroll and ON-OFF Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Condenser and evaporator with copper tube and aluminium finned coil.
- High efficiency delivery reverse blade EC INVERTER PLUG-FANS, with electronic speed control to easily adapt to the system characteristics.
- Electronic expansion valve.
- R410A refrigerant.
- Electrical board includes: door interlocking isolator, fuses, thermal protection relays on compressors, thermocontacts for the fans of the condensing section and contactors for the fan motors of the air handling section.
- Electronic proportional device to decrease the sound level, with a continuous regulation of the fan speed. This device also allows the cooling functioning of the unit by external temperature till -20°C.
- Microprocessor for the automatic control of the unit.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers SL Unit silencement

RFM Cooling circuit shut-off valve on discharge line

RFL Cooling circuit shut-off valve on liquid line

ECA EC Inverter fans on condensing section TXC Condensing coil with pre-coated fins

TXE Evaporating coil with pre-coated fins FT/M Soft bag filters efficiency M6-F7-F8 Rigid bag filters efficiency M6-F7-F8 FT/R

FT/E Electrostatic filters ΑT Constant air flow regulation control Constant available static pressure AT/P regulation control

WS2 Hot water coil with 3-Way valve **EHG** Electrical heater with step regulation

SQ Air quality sensor SSA Active sanitation systems

ΡF Filter differential pressure switch IS Modbus RTU protocol, RS485 serial interface

IST Modbus TCP/IP protocol, Ethernet port ISB BACnet MSTP protocol, RS485 serial

BACnet TCP/IP protocol, Ethernet port ISBT

ISL LonWorks protocol, FTT-10 serial interface

ISS SNMP protocol, Ethernet port CP Potential free contacts

RP Coils protection metallic guards

LOOSE ACCESSORIES:

MN High and low pressure gauges CR Remote control panel AG Rubber shock absorbers

ErPseer 2021

TECHNIC	AL DATA - URT/E	C/MS 0	51÷2	12 S/	ΊK								
MODEL			051	061	071	081	091	101	111	131	152	172	212
0 1:	Cooling capacity (1)	kW	57.9	65.8	77.6	87.4	98.6	113	129	145	168	198	252
Cooling	Absorbed power (1),(2)	kW	19.4	21.8	24.6	26.2	30.8	37.8	40.4	43.3	54.6	61.5	85.1
Cooling	SEER (3)		4.57	4.61	4.78	4.81	4.69	4.53	4.52	4.66	4.42	4.29	4.31
(EN14511)	Energy Efficiency (3)	%	180	181	188	189	185	178	178	183	174	169	169
Llastina	Heating capacity (4)	kW	60.2	67.2	76.8	88.6	101	115	133	151	173	204	262
Heating	Absorbed power (2),(4)	kW	16.8	17.9	20.2	22.8	25.2	32.2	34.0	40.0	45.7	50.4	70.5
Heating	SCOP (5)		3.46	3.51	3.62	3.60	3.57	3.40	3.44	3.52	3.56	3.55	3.47
(EN14511)	Energy Efficiency (5)	%	135	137	142	141	140	133	135	138	139	139	136
	Air flow	m³/s	2.67	3.30	4.05	4.05	4.84	5.49	6.32	6.32	8.20	9.79	12.31
Air treatment	Available static pressure	Pa	250	250	250	250	250	250	250	250	250	250	250
section	Fan	n°	1	1	2	2	2	2	2	2	2	4	4
	Filter	Tipo	G4	G4	G4	G4	G4	G4	G4	G4	G4	G4	G4
0 1 :	Compressor	n°	2	2	2	2	2	2	2	2	4	4	4
Condensing section	Refrigerant circuits	n°	1	1	1	1	1	1	1	1	2	2	2
Section	Capacity steps	n°	Stepless								Stepless		
	Heating capacity (6)	kW	85	100	125	125	150	175	200	200	250	300	350
	Air pressure drops	Pa	30	31	31	31	31	30	36	36	35	35	57
Hot water coil	Water flow (6)	l/s	2.03	2.39	2.99	2.99	3.58	4.18	4.78	4.78	5.97	7.17	8.36
	Water pressure drops	kPa	45	47	48	48	49	44	51	51	53	57	45
	Water connections	"G	1"1/2	1″½	1"1/2	1″½	1″½	2"	2"	2"	2"	2 ½"	2 ½"
	Power supply	V/Ph/Hz			400/	3/50					400/3/50)	
Electrical heater	Heating capacity	kW	15	21	27	27	27	41	41	41	41	48	55
Electrical fleater	Max. absorbed current	А	22	30	39	39	39	59	59	59	59	69	79
	Steps	n°	2	2	2	2	2	4	4	4	4	4	4
Flootrical	V/Ph/Hz			400/	3/50					400/3/50)		
characteristics -	Max. running current	А	46	47	56	60	69	88	93	102	126	148	170
Characteristics	Max. starting current	А	169	169	179	192	236	212	225	269	258	315	344
Sound pressure (7)	dB(A)	57	57	57	57	57	58	59	59	60	60	61
Weights	Transport weight	Kg	1070	1135	1245	1340	1360	1560	1940	1990	2300	2520	3465
vveigitts	Operating weight	Kg	1055	1120	1225	1320	1340	1540	1920	1970	2280	2500	3435

COMPLEMENTARY SECTIONS

 UM Section with preparation for Humidifier UM/EN Section Humidifier with electrodes immersed

F/CD Condensation endothermic hot air generator with modulating gas burner

MIXING BOX

MS. Further to components of the basic section, includes two wing profile aluminium dampers with spring return servomotors; the opposite movement is ensured by transmission of nylon gear.

DIMENSIONS

MODEL			051	061	071	081	091	101	111	131	152	172	212
L	STD	mm	3430	3530	3640	3640	3740	4220	4950	4950	5600	5750	7850
W	STD	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	STD	mm	2100	2340	2340	2340	2340	2340	2340	2340	2340	2510	2510

CLEARANCE AREA

URT/EC/MS 051÷101 S/IK 800 | 1700 | 800 | 1700

URT/EC/MS 111 ÷ 212 S/IK 1000 | 1700 | 1000 | 1700

- Evaporator inlet air temperature 27 °C d.b./19 °C w.b.; ambient air temperature 35 °C.
- Excluded the power absorbed by fans of air treatment section.
- 3. 4
- Seasonal energy efficiency of cooling. According to EU Regulation n. 2016/2281.

 Condenser inlet air temperature 20 °C, ambient air temperature 7 °C d.b./6 °C w.b.

 Seasonal energy efficiency of heating with average climatic conditions.

 According to EU Regulation n. 2016/2281. 5.
- 6. Inlet air temperature 20 °C, water temperature 70/60 °C.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of WP version are specified on technical brochure.

URT/EC/ECO 051÷212 S/IK

DOUBLE SKIN PACKAGED ROOF TOP UNITS WITH INVERTER SCROLL COMPRESSORS, EC INVERTER PLUG-FANS AND ECONOMIZER.

The double skin packaged Roof Top units of the AIRMAXI series are the ideal solution for air conditioning of wide surfaces such as shopping malls and restaurants, canteens or for industrial areas. These units feature Inverter Scroll compressor with R410A refrigerant and EC Inverter Plug-Fans. The highest efficiency at partial loads is guaranteed by the Inverter Scroll technology on compressor since its power is varied proportionally to the requested thermal load. Furthermore, the EC Inverter Plug-Fans with high energy efficiency backward blades are managed by an electronic control adjusting fans' rotational speed to adapt the air flow to the system capacity.

Equipped with extruded aluminium alloy sections and 50mm-thick sandwich panelling, these units are available in Cooling only and Reversible Heat Pump version.

The flat or pocket filters help to keep the air quality at a suitable level in order to guarantee appropriate hygiene standards.

The ECO units have an high level of modularity and adaptability to every plant-engineering need: these units feature, in addition to the basic sections, an ECONOMIZER automatically controlled both in FREE-COOLING or FREE-HEATING.

The unit can be equipped, as an option, with the innovative Thermodynamic Coil-Boost Heat Recovery to achieve better performance and efficiency both in cooling and heating up to 15%.

FROM 58 KW TO 252 KW.

The units are compliant to the ErP Regulation.

VERSION

URT/EC/ECO

Cooling only with EC Inverter Plug-Fans and Economizer

URT/EC/WP/ECO

Reversible Heat Pump with EC Inverter Plug-Fans and Economizer

FEATURES

- Structure of base perimeter made of steel sheet elements galvanised. Frame made of extruded aluminium alloy profiles connected by 3 way joints. Assembling of the base to the frame is of dual support and grants the walking on the base panels installation without sticking out screws. 50mm thick sandwich panels made of prepainted steel sheet; water proofing granted by gaskets having shape memory for perfect seal up even after repeated removals. Section connection is effected by means of assembling conic stirrups and water proofing is granted by gaskets.
- DC INVERTER Scroll and ON-OFF Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Condenser and evaporator with copper tube and aluminium finned coil.
- High efficiency delivery & intake reverse blade EC INVERTER PLUG-FANS, with electronic speed control to easily adapt to the system characteristics.
- Electronic expansion valve.
- R410A refrigerant.
- Electrical board includes: door interlocking isolator, fuses, thermal protection relays on compressors, thermocontacts for the fans of the condensing section and contactors for the fan motors of the air handling section.
- Electronic proportional device to decrease the sound level, with a continuous regulation of the fan speed. This device also allows the cooling functioning of the unit by external temperature till -20°C.
- Microprocessor for the automatic control of the unit.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM	Automatic circuit breakers

Unit silencement SL

THCB Thermodynamic Coil-Boost Heat Recovery (ECO only)

RFM Cooling circuit shut-off valve on discharge line

RFL Cooling circuit shut-off valve on liquid line

ECA EC Inverter fans on condensing section TXC Condensing coil with pre-coated fins

TXE Evaporating coil with pre-coated fins FT/M Soft bag filters efficiency M6-F7-F8

FT/R Rigid bag filters efficiency M6-F7-F8 FT/E Electrostatic filters

Constant air flow regulation control ΑT AT/P Constant available static pressure regulation control

WS2 Hot water coil with 3-Way valve EHG Electrical heater with step regulation

Enthalpic control (ECO only) CH

SQ Air quality sensor SSA Active sanitation systems

PF Filter differential pressure switch IS Modbus RTU protocol, RS485 serial

interface IST Modbus TCP/IP protocol, Ethernet port ISB BACnet MSTP protocol, RS485 serial

interface

ISBT BACnet TCP/IP protocol, Ethernet port

ISL LonWorks protocol, FTT-10 serial interface

SNMP protocol, Ethernet port ISS CP Potential free contacts

RP Coils protection metallic guards

LOOSE ACCESSORIES:

MN High and low pressure gauges CR Remote control panel AG Rubber shock absorbers

ErP SEER 2021

TECHNICAL DATA LIBT/EC/ECO 051,212 C/IV

	AL DATA - URT/EC	J/ECO	051÷	212 8	5/IK								
MODEL			051	061	071	081	091	101	111	131	152	172	212
Cooling	Cooling capacity (1)	kW	57.9	65.8	77.6	87.4	98.6	113	129	145	168	198	252
Cooling	Absorbed power (1),(2)	kW	19.4	21.8	24.6	26.2	30.8	37.8	40.4	43.3	54.6	61.5	85.1
Cooling	SEER (3)		4.57	4.61	4.78	4.81	4.69	4.53	4.52	4.66	4.42	4.29	4.31
(EN14511)	Energy Efficiency (3)	%	180	181	188	189	185	178	178	183	174	169	169
Heating	Heating capacity (4)	kW	60.2	67.2	76.8	88.6	101	115	133	151	173	204	262
rieating	Absorbed power (2),(4)	kW	16.8	17.9	20.2	22.8	25.2	32.2	34.0	40.0	45.7	50.4	70.5
Heating	SCOP (5)		3.46	3.51	3.62	3.60	3.57	3.40	3.44	3.52	3.56	3.55	3.47
(EN14511)	Energy Efficiency (5)	%	135	137	142	141	140	133	135	138	139	139	136
	Air flow	m³/s	2.67	3.30	4.05	4.05	4.84	5.49	6.32	6.32	8.20	9.79	12.31
Air treatment	Available static pressure	Pa	250	250	250	250	250	250	250	250	250	250	250
section	Fan	n°	1	1	2	2	2	2	2	2	2	4	4
	Filter	Tipo	G4	G4	G4	G4	G4	G4	G4	G4	G4	G4	G4
	Air flow	m³/s	2.67	3.30	4.05	4.05	4.84	5.49	6.32	6.32	8.20	9.79	12.31
Air intake section	Available static pressure	Pa	100	100	100	100	100	100	100	100	100	100	100
	Fan	n°	1	1	2	2	2	2	2	2	2	4	4
(Compressor	n°	2	2	2	2	2	2	2	2	4	4	4
Condensing section	Refrigerant circuits	n°	1	1	1	1	1	1	1	1	2	2	2
Section	Capacity steps	n°	Stepless								Stepless		
	Heating capacity (6)	kW	85	100	125	125	150	175	200	200	250	300	350
	Air pressure drops	Pa	30	31	31	31	31	30	36	36	35	35	57
Hot water coil	Water flow (6)	I/s	2.03	2.39	2.99	2.99	3.58	4.18	4.78	4.78	5.97	7.17	8.36
	Water pressure drops	kPa	45	47	48	48	49	44	51	51	53	57	45
	Water connections	"G	1″½	1″½	1"1/2	1"1/2	1"1/2	2"	2"	2"	2"	2 ½"	2 ½"
	Power supply	V/Ph/Hz			400,	3/50					400/3/50)	
E	Heating capacity	kW	15	21	27	27	27	41	41	41	41	48	55
Electrical heater	Max. absorbed current	А	22	30	39	39	39	59	59	59	59	69	79
	Steps	n°	2	2	2	2	2	4	4	4	4	4	4
	Power supply	V/Ph/Hz			400/	3/50					400/3/50)	
Electrical	Max. running current	А	46	47	56	60	69	88	93	102	126	148	170
characteristics	Max. starting current	А	169	169	179	192	236	212	225	269	258	315	344
Sound pressure (7	7)	dB(A)	57	57	57	57	57	58	59	59	60	60	61
	Transport weight	Kg	1500	1610	1740	1840	1860	2000	2400	2450	3020	3370	4190
Weights	Operating weight	Kg	1480	1590	1720	1820	1840	1975	2375	2425	2990	3335	4150

COMPLEMENTARY SECTIONS

UM Section with preparation for Humidifier UM/EN Section Humidifier with electrodes immersed

F/CD Condensation endothermic hot air generator with modulating gas burner

ECONOMIZER

ECO. Further to components of the basic section, includes: return air fan with electrical motor, complete of adjustable transmission, mounted on elastic supports; motorized wing profile aluminium dampers, the opposite movement is ensured by transmission of nylon gear. Exhaust, recirculation and fresh air are controlled through the microprocessor fitted in the base unit; this microprocessor, according to the temperature of the return and fresh air, modulates the opening of the dampers and controls the cooling circuit capacity steps to ensure comfort conditions of the handled air. The adjustments of the ECO versions are automatically controlled both in free-cooling and free-heating mode.

DIMENSIONS

MODEL			051	061	071	081	091	101	111	131	152	172	212
L	STD	mm	5260	5480	5570	5570	5650	6170	6900	6900	8080	8470	11020
W	STD	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	STD	mm	2100	2340	2340	2340	2340	2340	2340	2340	2340	2510	2510

CLEARANCE AREA

URT/EC/ECO 051÷101 S/IK 800 1700 800 1700

URT/EC/ECO 111÷212 S/IK 1000 1700 1000 1700

- Evaporator inlet air temperature 27 °C d.b./19 °C w.b.; ambient air temperature 35 °C.
- Excluded the power absorbed by fans of air treatment section.
- 4
- Seasonal energy efficiency of cooling. According to EU Regulation n. 2016/2281. Condenser inlet air temperature 20 °C, ambient air temperature 7 °C d.b./6 °C w.b. Seasonal energy efficiency of heating with average climatic conditions. According to EU Regulation n. 2016/2281.
- 6. Inlet air temperature 20 °C, water temperature 70/60 °C.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of WP version are specified on technical brochure.

URT/EC/ECO/REC-FX 051÷212 S/IK

DOUBLE SKIN PACKAGED ROOF TOP UNITS WITH INVERTER SCROLL COMPRESSORS, EC INVERTER PLUG-FANS, ECONOMIZER AND CROSS-FLOW HEAT RECOVERY.

The double skin packaged Roof Top units of the AIRMAXI series are the ideal solution for air conditioning of wide surfaces such as shopping malls and restaurants, canteens or for industrial areas. These units feature Inverter Scroll compressor with R410A refrigerant and EC Inverter Plug-Fans. The highest efficiency at partial loads is guaranteed by the Inverter Scroll technology on compressor since its power is varied proportionally to the requested thermal load. Furthermore, the EC Inverter Plug-Fans with high energy efficiency backward blades are managed by an electronic control adjusting fans' rotational speed to adapt the air flow to the system capacity.

Equipped with extruded aluminium alloy sections and 50mm-thick sandwich panelling, these units are available in Cooling only and Reversible Heat Pump version.

The flat or pocket filters help to keep the air quality at a suitable level in order to guarantee appropriate hygiene standards.

The ECO/REC-FX units have an high level of modularity and adaptability to every plant-engineering need: these units feature, in addition to the basic sections, an ECONOMIZER automatically controlled both in FREE-COOLING or FREE-HEATING and a CROSS-FLOW HEAT RECOVERY.

The units are compliant to the ErP Regulation.

FROM 58 KW TO 252 KW.

VERSION

URT/EC/ECO/REC-FX

Cooling only with EC Inverter Plug-Fans, Economizer and Cross-flow Heat Recovery

URT/EC/WP/ECO/REC-FX

Reversible Heat Pump with EC Inverter Plug-Fans, Economizer and Cross-flow Heat Recovery

FEATURES

- Structure of base perimeter made of steel sheet elements galvanised. Frame made of extruded aluminium alloy profiles connected by 3 way joints. Assembling of the base to the frame is of dual support and grants the walking on the base panels installation without sticking out screws. 50mm thick sandwich panels made of prepainted steel sheet; water proofing granted by gaskets having shape memory for perfect seal up even after repeated removals. Section connection is effected by means of assembling conic stirrups and water proofing is granted by gaskets.
- DC INVERTER Scroll and ON-OFF Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Condenser and evaporator with copper tube and aluminium finned coil.
- High efficiency delivery & intake reverse blade EC INVERTER PLUG-FANS, with electronic speed control to easily adapt to the system characteristics.
- Electronic expansion valve.
- R410A refrigerant.
- Electrical board includes: door interlocking isolator, fuses, thermal protection relays on compressors, thermocontacts for the fans of the condensing section and contactors for the fan motors of the air handling section.
- Electronic proportional device to decrease the sound level, with a continuous regulation of the fan speed. This device also allows the cooling functioning of the unit by external temperature till -20°C.
- Microprocessor for the automatic control of the unit.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM	Automatic circuit breakers

Unit silencement SL

RFM Cooling circuit shut-off valve on discharge line

RFL Cooling circuit shut-off valve on liquid line

ECA EC Inverter fans on condensing section TXC Condensing coil with pre-coated fins

TXE Evaporating coil with pre-coated fins FT/M Soft bag filters efficiency M6-F7-F8 FT/R Rigid bag filters efficiency M6-F7-F8

FT/E Electrostatic filters ΔТ Constant air flow regulation control Constant available static pressure AT/P regulation control

WS2 Hot water coil with 3-Way valve **EHG** Electrical heater with step regulation

СН Enthalpic control (ECO only) SQ Air quality sensor

interface

Active sanitation systems SSA PF

Filter differential pressure switch IS Modbus RTU protocol, RS485 serial

IST Modbus TCP/IP protocol, Ethernet port ISB BACnet MSTP protocol, RS485 serial

ISBT BACnet TCP/IP protocol, Ethernet port

ISL LonWorks protocol, FTT-10 serial interface

SNMP protocol, Ethernet port ISS CP Potential free contacts

RP Coils protection metallic guards

LOOSE ACCESSORIES:

MN High and low pressure gauges CR Remote control panel AG Rubber shock absorbers

TECHNICAL DATA - URT/EC/ECO/REC-EX 051÷212 S/IK

	AL DAIA - OIII/LI	3/LCO/	IILC-	$1 \wedge 0$	J 1 7 Z	12 3/1							
MODEL			051	061	071	081	091	101	111	131	152	172	212
Caalina	Cooling capacity (1)	kW	57.9	65.8	77.6	87.4	98.6	113	129	145	168	198	252
Cooling	Absorbed power (1),(2)	kW	19.4	21.8	24.6	26.2	30.8	37.8	40.4	43.3	54.6	61.5	85.1
Cooling	SEER (3)		4.57	4.61	4.78	4.81	4.69	4.53	4.52	4.66	4.42	4.29	4.31
(EN14511)	Energy Efficiency (3)	%	180	181	188	189	185	178	178	183	174	169	169
Heating	Heating capacity (4)	kW	60.2	67.2	76.8	88.6	101	115	133	151	173	204	262
пеацпу	Absorbed power (2),(4)	kW	16.8	17.9	20.2	22.8	25.2	32.2	34.0	40.0	45.7	50.4	70.5
Heating	SCOP (5)		3.46	3.51	3.62	3.60	3.57	3.40	3.44	3.52	3.56	3.55	3.47
(EN14511)	Energy Efficiency (5)	%	135	137	142	141	140	133	135	138	139	139	136
	Air flow	m³/s	2.67	3.30	4.05	4.05	4.84	5.49	6.32	6.32	8.20	9.79	12.31
Air treatment	Available static pressure	Pa	250	250	250	250	250	250	250	250	250	250	250
section	Fan	n°	1	1	2	2	2	2	2	2	2	4	4
	Filter	Tipo	G4	G4	G4	G4	G4	G4	G4	G4	G4	G4	G4
	Air flow	m³/s	2.67	3.30	4.05	4.05	4.84	5.49	6.32	6.32	8.20	9.79	12.31
Air intake section	Available static pressure	Pa	100	100	100	100	100	100	100	100	100	100	100
	Fan	n°	1	1	2	2	2	2	2	2	2	4	4
	Compressor	n°	2	2	2	2	2	2	2	2	4	4	4
Condensing	Refrigerant circuits	n°	1	1	1	1	1	1	1	1	2	2	2
section	Capacity steps	n°			Step	oless					Stepless	;	
	Heating capacity (6)	kW	85	100	125	125	150	175	200	200	250	300	350
	Air pressure drops	Pa	30	31	31	31	31	30	36	36	35	35	57
Hot water coil	Water flow (6)	l/s	2.03	2.39	2.99	2.99	3.58	4.18	4.78	4.78	5.97	7.17	8.36
	Water pressure drops	kPa	45	47	48	48	49	44	51	51	53	57	45
	Water connections	"G	1"1/2	1"1/2	1"1/2	1"1/2	1"1/2	2"	2"	2"	2"	2 ½"	2 ½"
	Power supply	V/Ph/Hz			400,	/3/50					400/3/50)	
Electrical bacter	Heating capacity	kW	15	21	27	27	27	41	41	41	41	48	55
Electrical heater	Max. absorbed current	А	22	30	39	39	39	59	59	59	59	69	79
	Steps	n°	2	2	2	2	2	4	4	4	4	4	4
Et	Power supply	V/Ph/Hz			400,	/3/50					400/3/50)	
Electrical characteristics	Max. running current	А	46	47	56	60	69	88	93	102	126	148	170
criaracteristics	Max. starting current	А	169	169	179	192	236	212	225	269	258	315	344
Sound pressure (7	Sound pressure (7) dB(A) 57 57 57				57	57	58	59	59	60	60	61	
10/-:	Transport weight	Kg	1645	1720	1910	2020	2040	2210	2640	2690	3260	3590	4390
Weights	Operating weight	Kg	1620	1695	1885	1995	2015	2185	2610	2660	3225	3555	4350

COMPLEMENTARY SECTIONS

UM Section with preparation for Humidifier UM/EN Section Humidifier with electrodes immersed

F/CD Condensation endothermic hot air generator with modulating gas burner

ECONOMIZER AND CROSS-FLOW HEAT RECOVERY

ECO/REC-FX. Further to the components of the ECO section, it includes: static recovery device made of aluminium with moisture drain pan, flat filters inspectable through hinged door and dampers with return spring servomotors (fresh air damper + air recirculation damper + exhaust air damper + 2 Free-Cooling dampers). Also the adjustment of this section is included into the unit control.

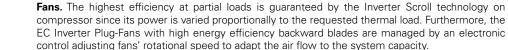
DIMENSIONS

MODEL			051	061	071	081	091	101	111	131	152	172	212
L	STD	mm	6060	6060	6270	6270	6450	7050	7870	7870	9120	9380	11650
W	STD	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	STD	mm	2100	2340	2340	2340	2340	2340	2340	2340	2340	2510	2510

CLEARANCE AREA

URT/EC/ECO/REC-FX 051÷101 S/IK URT/EC/ECO/REC-FX 111÷212 S/IK 1000 1700 1000 1700 800 | 1700 | 800 | 1700

- Evaporator inlet air temperature 27 °C d.b./19 °C w.b.; ambient air temperature 35 °C.
- Excluded the power absorbed by fans of air treatment section.
- 3. 4
- Seasonal energy efficiency of cooling. According to EU Regulation n. 2016/2281. Condenser inlet air temperature 20 °C, ambient air temperature 7 °C d.b./6 °C w.b. Seasonal energy efficiency of heating with average climatic conditions. According to EU Regulation n. 2016/2281.
- 6. Inlet air temperature 20 °C, water temperature 70/60 °C.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of WP version are specified on technical brochure.



URT/EC/ECO/REC-WH 051÷212 S/IK

DOUBLE SKIN PACKAGED ROOF TOP UNITS WITH INVERTER SCROLL COMPRESSORS, EC INVERTER PLUG-FANS, ECONOMIZER AND WHEEL HEAT RECOVERY.

The double skin packaged Roof Top units of the AIRMAXI series are the ideal solution for air conditioning of wide surfaces such as shopping malls and restaurants, canteens or for industrial areas. These units feature Inverter Scroll compressor with R410A refrigerant and EC Inverter Plug-

control adjusting fans' rotational speed to adapt the air flow to the system capacity. Equipped with extruded aluminium alloy sections and 50mm-thick sandwich panelling, these units are available in Cooling only and Reversible Heat Pump version.

The flat or pocket filters help to keep the air quality at a suitable level in order to guarantee appropriate hygiene standards.

The ECO/REC-WH units have an high level of modularity and adaptability to every plant-engineering need: these units feature, in addition to the basic sections, an ECONOMIZER automatically controlled both in FREE-COOLING or FREE-HEATING and a WHEEL HEAT RECOVERY, able to treat up to 100% of total air flow.

The units are compliant to the ErP Regulation.

IRMAXI

FROM 58 KW TO 252 KW.

VERSION

URT/EC/ECO/REC-WH

Cooling only with EC Inverter Plug-Fans, Economizer and Wheel Heat Recovery

URT/EC/WP/ECO/REC-WH

Reversible Heat Pump with EC Inverter Plug-Fans, Economizer and Wheel Heat Recovery

FEATURES

- Structure of base perimeter made of steel sheet elements galvanised. Frame made of extruded aluminium alloy profiles connected by 3 way joints. Assembling of the base to the frame is of dual support and grants the walking on the base panels installation without sticking out screws. 50mm thick sandwich panels made of prepainted steel sheet; water proofing granted by gaskets having shape memory for perfect seal up even after repeated removals. Section connection is effected by means of assembling conic stirrups and water proofing is granted by gaskets.
- DC INVERTER Scroll and ON-OFF Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Condenser and evaporator with copper tube and aluminium finned coil.
- High efficiency delivery & intake reverse blade EC INVERTER PLUG-FANS, with electronic speed control to easily adapt to the system characteristics.
- Electronic expansion valve.
- R410A refrigerant.
- Electrical board includes: door interlocking isolator, fuses, thermal protection relays on compressors, thermocontacts for the fans of the condensing section and contactors for the fan motors of the air handling section.
- Electronic proportional device to decrease the sound level, with a continuous regulation of the fan speed. This device also allows the cooling functioning of the unit by external temperature till -20°C.
- Microprocessor for the automatic control of the unit.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM Automatic circuit breakers SL Unit silencement

RFM Cooling circuit shut-off valve on discharge line

 RFL Cooling circuit shut-off valve on liquid line

FCA EC Inverter fans on condensing section TXC Condensing coil with pre-coated fins

TXE Evaporating coil with pre-coated fins FT/M Soft bag filters efficiency M6-F7-F8 FT/R Rigid bag filters efficiency M6-F7-F8

FT/E Electrostatic filters

AT	Constant air flow regulation control
AT/P	Constant available static pressure
	regulation control
WS2	Hot water coil with 3-Way valve
EHG	Electrical heater with step regulation
CH	Enthalpic control (ECO only)
SQ	Air quality sensor
SSA	Active sanitation systems
PF	Filter differential pressure switch

IS Modbus RTU protocol, RS485 serial interface

IST Modbus TCP/IP protocol, Ethernet port ISB BACnet MSTP protocol, RS485 serial interface

ISBT BACnet TCP/IP protocol, Ethernet port ISL LonWorks protocol, FTT-10 serial

interface

SNMP protocol, Ethernet port ISS CP Potential free contacts

RP Coils protection metallic guards

LOOSE ACCESSORIES:

MN High and low pressure gauges CR Remote control panel AG Rubber shock absorbers

TECHNICAL DATA - LIRT/EC/ECO/REC-WH 051-212 S/IK

TECHINICA	L DAIA - UNI/EC/E	CU/NE	C-VVD	I US I ÷	·∠ ∠ こ)/IN									
MODEL			051	061	071	081	091	101	111	131	152	172	212		
Cooling	Cooling capacity (1)	kW	57.9	65.8	77.6	87.4	98.6	113	129	145	168	198	252		
Cooling	Absorbed power (1),(2)	kW	19.4	21.8	24.6	26.2	30.8	37.8	40.4	43.3	54.6	61.5	85.1		
Cooling	SEER (3)		4.57	4.61	4.78	4.81	4.69	4.53	4.52	4.66	4.42	4.29	4.31		
(EN14511)	Energy Efficiency (3)	%	180	181	188	189	185	178	178	183	174	169	169		
Heating	Heating capacity (4)	kW	60.2	67.2	76.8	88.6	101	115	133	151	173	204	262		
пеаші	Absorbed power (2),(4)	kW	16.8	17.9	20.2	22.8	25.2	32.2	34.0	40.0	45.7	50.4	70.5		
Heating	SCOP (5)		3.46	3.51	3.62	3.60	3.57	3.40	3.44	3.52	3.56	3.55	3.47		
(EN14511)	Energy Efficiency (5)	%	135	137	142	141	140	133	135	138	139	139	136		
	Air flow	m³/s	2.67	3.30	4.05	4.05	4.84	5.49	6.32	6.32	8.20	9.79	12.31		
Air treatment	Available static pressure	Pa	250	250	250	250	250	250	250	250	250	250	250		
section	Fan	n°	1	1	2	2	2	2	2	2	2	4	4		
	Filter	Tipo	G4	G4	G4	G4	G4	G4	G4	G4	G4	G4	G4		
	Air flow	m³/s	2.67	3.30	4.05	4.05	4.84	5.49	6.32	6.32	8.20	9.79	12.31		
Air intake section	Available static pressure	Pa	100	100	100	100	100	100	100	100	100	100	100		
	Fan	n°	1	1	2	2	2	2	2	2	2	4	4		
0 1 :	Compressor	n°	2	2	2	2	2	2	2	2	4	4	4		
condensing	Refrigerant circuits	n°	1	1	1	1	1	1	1	1	2	2	2		
Section	Capacity steps	n°			Step	less					Stepless	;			
	Heating capacity (6)	kW	85	100	125	125	150	175	200	200	250	300	350		
	Air pressure drops	Pa	30	31	31	31	31	30	36	36	35	35	57		
Hot water coil	Water flow (6)	l/s	2.03	2.39	2.99	2.99	3.58	4.18	4.78	4.78	5.97	7.17	8.36		
	Water pressure drops	kPa	45	47	48	48	49	44	51	51	53	57	45		
	Water connections	"G	1"1/2	1"1/2	1"1/2	1"1/2	1"1/2	2"	2"	2"	2"	2 ½"	2 ½"		
	Power supply	V/Ph/Hz			400/	3/50					400/3/50)			
FI .: 11 .	Heating capacity	kW	15	21	27	27	27	41	41	41	41	48	55		
Electrical heater	Max. absorbed current	А	22	30	39	39	39	59	59	59	59	69	79		
	Steps	n°	2	2	2	2	2	4	4	4	4	4	4		
	Power supply	V/Ph/Hz			400/	3/50					400/3/50	4 4 4 0/3/50			
Electrical	Max. running current	А	46	47	56	60	69	88	93	102	126	148	170		
characteristics	Max. starting current	A	169	169	179	192	236	212	225	269	258 315	315	344		
Sound pressure (7	7)	dB(A)	57	57	57	57	57	58	59	59	60	60 61			
14/ 1	Transport weight	Kg	1645	1720	1910	2020	2040	2210	2640	2690	3260	3590	4390		
Weights	Operating weight	Kg	1620	1695	1885	1995	2015	2185	2610	2660	3225	3555	4350		

COMPLEMENTARY SECTIONS

UM Section with preparation for Humidifier UM/EN Section Humidifier with electrodes immersed

F/CD Condensation endothermic hot air generator with modulating gas burner

ECONOMIZER AND WHEEL HEAT RECOVERY

ECO/REC-WH. Further to the components of the ECO section, includes: high efficiency wheel-type heat recovery device made of aluminium with hygroscopic treatment, managed by a constant-speed electric motor, with moisture drain pan and dampers with spring return (fresh air damper + air recirculation damper + exhaust air damper). Also the adjustment of this section is included into the unit control.

DIMENSIONS

MODEL			051	061	071	081	091	101	111	131	152	172	212
L	STD	mm	6060	6060	6270	6270	6450	7050	7870	7870	9120	9380	11650
W	STD	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	STD	mm	2100	2340	2340	2340	2340	2340	2340	2340	2340	2510	2510

CLEARANCE AREA

URT/EC/ECO/REC-WH 051÷101 S/IK URT/EC/ECO/REC-WH 111÷212 S/IK 1000 1700 1000 1700 800 | 1700 | 800 | 1700

- Evaporator inlet air temperature 27 °C d.b./19 °C w.b.; ambient air temperature 35 °C.
 - Excluded the power absorbed by fans of air treatment section.
- 3. 4
- Seasonal energy efficiency of cooling. According to EU Regulation n. 2016/2281. Condenser inlet air temperature 20 °C, ambient air temperature 7 °C d.b./6 °C w.b. Seasonal energy efficiency of heating with average climatic conditions. 5. According to EU Regulation n. 2016/2281.
- 6. Inlet air temperature 20 °C, water temperature 70/60 °C.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of WP version are specified on technical brochure.

URT/EC 051+212 S/K

DOUBLE SKIN PACKAGED ROOF TOP UNITS WITH SCROLL COMPRESSORS AND EC INVERTER PLUG-FANS.

The packaged Roof Top air conditioning units of the AIRMAXI series are ideal for the air conditioning of large surface areas for public use such as halls, shopping centres, cafeterias, restaurants and health centres, or for industrial environments such as food processing or preservation centres. These units feature Scroll compressors with R410A refrigerant and EC Inverter Plug-Fans. The EC Inverter Plug-Fans with high energy efficiency backward blades both for intake as well as delivery are managed by an electronic control adjusting fans' rotational speed to adapt the air flow to the system capacity.

Equipped with extruded aluminium alloy sections and 50mm-thick sandwich panelling, these units are available in Cooling only and Reversible Heat Pump version.

The flat or pocket filters help to keep the air quality at a suitable level in order to guarantee appropriate hygiene standards.

The units are compliant to the ErP Regulation.

FROM 58 KW TO 252 KW.

VERSION

URT/EC

Cooling only with EC Inverter Plug-Fans

URT/EC/WP

Reversible Heat Pump with EC Inverter Plug-Fans

FEATURES

- Structure of base perimeter made of steel sheet elements galvanised. Frame made of extruded aluminium alloy profiles connected by 3 way joints. Assembling of the base to the frame is of dual support and grants the walking on the base panels installation without sticking out screws. 50mm thick sandwich panels made of prepainted steel sheet; water proofing granted by gaskets having shape memory for perfect seal up even after repeated removals. Section connection is effected by means of assembling conic stirrups and water proofing is granted by gaskets.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Condenser and evaporator with copper tube and aluminium finned coil.
- High efficiency delivery reverse blade EC INVERTER PLUG-FANS, with electronic speed control to easily adapt to the system characteristics.
- R410A refrigerant.

FT/E

ISBT

Electrical board includes: door interlocking isolator, fuses, thermal protection relays on compressors, thermocontacts for the fans of the condensing section and contactors for the fan motors of the air handling section.

ISL

AG

Microprocessor for the automatic control of the unit.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM	Automatic circuit breakers
SL	Unit silencement
RFM	Cooling circuit shut-off valve on discharge line
RFL	Cooling circuit shut-off valve on liquid line
CT	Condensing control down to 0 °C
CC	Condensing control down to -20 °C
ECA	EC Inverter fans on condensing section
TXC	Condensing coil with pre-coated fins
TXE	Evaporating coil with pre-coated fins
FT/M	Soft bag filters efficiency M6-F7-F8
FT/R	Rigid bag filters efficiency M6-F7-F8

/ (1	constant an new regulation control
AT/P	Constant available static pressure
	regulation control
WS2	Hot water coil with 3-Way valve
EHG	Electrical heater with step regulation
SQ	Air quality sensor
SSA	Active sanitation systems
PF	Filter differential pressure switch
IS	Modbus RTU protocol, RS485 serial
	interface
IST	Modbus TCP/IP protocol, Ethernet port
ISB	BACnet MSTP protocol, RS485 serial
	interface

BACnet TCP/IP protocol, Ethernet port

Electrostatic filters

Constant air flow regulation

n control		interface
ressure	ISS	SNMP protocol, Ethernet port
	CP	Potential free contacts
valve	RP	Coils protection metallic guards
regulation		
	L009	SE ACCESSORIES:
switch	MN	High and low pressure gauges
485 serial	CR	Remote control panel

LonWorks protocol, FTT-10 serial

Rubber shock absorbers

guards

ErP SEER 2021

TECHNIC	AL DATA - URT/EC	C 051÷	212 S	S/K									
MODEL			051	061	071	081	091	101	111	131	152	172	212
Caaliaa	Cooling capacity (1)	kW	57.9	65.8	77.6	87.4	98.6	113	129	145	168	198	252
Cooling	Absorbed power (1),(2)	kW	19.4	21.8	24.6	26.2	30.8	37.8	40.4	43.3	54.6	61.5	85.1
Cooling	SEER (3)		3.65	3.68	3.86	3.82	3.90	3.84	3.71	3.81	3.88	3.76	3.78
(EN14511)	Energy Efficiency (3)	%	143	144	151	150	153	151	145	149	152	147	148
Heating	Heating capacity (4)	kW	60.2	67.2	76.8	88.6	101	115	133	151	173	204	262
neating	Absorbed power (2),(4)	kW	16.8	17.9	20.2	22.8	25.2	32.2	34.0	40.0	45.7	50.4	70.5
Heating	SCOP (5)		3.22	3.23	3.31	3.31	3.26	3.23	3.20	3.29	3.33	3.32	3.24
(EN14511)	Energy Efficiency (5)	%	126	126	129	129	127	126	125	129	130	130	127
	Air flow	m³/s	2.67	3.30	4.05	4.05	4.84	5.49	6.32	6.32	8.20	9.79	12.31
Air treatment section	Available static pressure	Pa	250	250	250	250	250	250	250	250	250	250	250
(EC version)	Fan	n°	1	1	2	2	2	2	2	2	2	4	4
(LC VCISION)	Filter	Tipo	G4	G4	G4	G4	G4	G4	G4	G4	G4	G4	G4
0 1 :	Compressor	n°	2	2	2	2	2	3	3	3	4	4	4
Condensing section	Refrigerant circuits	n°	1	1	1	1	1	1	1	1	2	2	2
Section	Capacity steps	n°			2			3		3		198 198	
	Heating capacity (6)	kW	85	100	125	125	150	175	200	200	250	300	350
	Air pressure drops	Pa	30	31	31	31	31	30	36	36	35	35	57
Hot water coil	Water flow (6)	l/s	2.03	2.39	2.99	2.99	3.58	4.18	4.78	4.78	5.97	7.17	8.36
	Water pressure drops	kPa	45	47	48	48	49	44	51	51	53	57	45
	Water connections	"G	1"1/2	1"1/2	1"1/2	1"1/2	1"1/2	2"	2"	2"	2"	2 ½"	2 ½"
	Power supply	V/Ph/Hz			400,	/3/50	•				400/3/50)	
Electrical heater	Heating capacity	kW	15	21	27	27	27	41	41	41	41	48	55
Electrical neater	Max. absorbed current	А	22	30	39	39	39	59	59	59	59	69	79
	Steps	n°	2	2	2	2	2	4	4	4	4	4	4
Electrical	Power supply	V/Ph/Hz			400,	/3/50					400/3/50)	
characteristics	Max. running current	А	46	47	56	60	69	88	93	102	126	148	170
(EC version)	Max. starting current	А	169	169	179	192	236	212	225	269	258	315	344
Sound pressure	EC version (7)	dB(A)	57	57	57	57	57	58	59	59	60	60	61
Weights	Transport weight	Kg	990	1050	1150	1250	1260	1450	1810	1860	2230	2400	3180
(EC version)	Operating weight	Kg	975	1035	1135	1235	1245	1430	1790	1840	2210	2380	3150

COMPLEMENTARY SECTIONS

UM Section with preparation for Humidifier UM/EN Section Humidifier with electrodes immersed

F/CD Condensation endothermic hot air generator with modulating gas burner

DIMENSIONS

MODEL			051	061	071	081	091	101	111	131	152	172	212
L	EC	mm	2980	3080	3190	3190	3290	3770	4500	4500	5150	5300	7370
W	EC	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	EC	mm	2100	2340	2340	2340	2340	2340	2340	2340	2340	2510	2510

CLEARANCE AREA

URT/EC 051÷101 S/K 800 1700 800 1700 URT/EC 111÷212 S/K 1000 | 1700 | 1000 | 1700

- Evaporator inlet air temperature 27 °C d.b./19 °C w.b.; ambient air temperature 35 °C.
- Excluded the power absorbed by fans of air treatment section.
- 3. 4.
- Seasonal energy efficiency of cooling. According to EU Regulation n. 2016/2281. Condenser inlet air temperature 20 °C, ambient air temperature 7 °C d.b./6 °C w.b. Seasonal energy efficiency of heating with average climatic conditions. According to EU Regulation n. 2016/2281. Inlet air temperature 20 °C, water temperature 70/60 °C.
- 6.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of WP versions are specified on technical brochure.

URT/EC/MS 051÷212 S/K

DOUBLE SKIN PACKAGED ROOF TOP UNITS WITH SCROLL COMPRESSORS, EC INVERTER PLUG-FANS AND MIXING BOX.

The packaged Roof Top air conditioning units of the **AIRMAXI** series are ideal for the air conditioning of large surface areas for public use such as halls, shopping centres, cafeterias, restaurants and health centres, or for industrial environments such as food processing or preservation centres. These units feature Scroll compressors with R410A refrigerant and **EC Inverter Plug-Fans**. The EC Inverter Plug-Fans with high energy efficiency backward blades both for intake as well as delivery are managed by an electronic control adjusting fans' rotational speed to adapt the air flow to the system capacity.

Equipped with extruded aluminium alloy sections and 50mm-thick sandwich panelling, these units are available in Cooling only and Reversible Heat Pump version.

The flat or pocket filters help to keep the air quality at a suitable level in order to guarantee appropriate hygiene standards.

The MS units have an high level of modularity and adaptability to every plant-engineering need:

The units are compliant to the ErP Regulation.

FROM 58 KW TO 252 KW.

VERSION

URT/EC/MS

Cooling only with EC Inverter Plug-Fans and Mixing Box

URT/EC/WP/MS

Reversible Heat Pump with EC Inverter Plug-Fans and Mixing Box

FEATURES

- Structure of base perimeter made of steel sheet elements galvanised. Frame made of extruded aluminium alloy profiles connected by 3 way joints. Assembling of the base to the frame is of dual support and grants the walking on the base panels installation without sticking out screws. 50mm thick sandwich panels made of prepainted steel sheet; water proofing granted by gaskets having shape memory for perfect seal up even after repeated removals. Section connection is effected by means of assembling conic stirrups and water proofing is granted by gaskets.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Condenser and evaporator with copper tube and aluminium finned coil.
- High efficiency delivery reverse blade EC INVERTER PLUG-FANS, with electronic speed control
 to easily adapt to the system characteristics.
- R410A refrigerant.
- Electrical board includes: door interlocking isolator, fuses, thermal protection relays on compressors, thermocontacts for the fans of the condensing section and contactors for the fan motors of the air handling section.
- Microprocessor for the automatic control of the unit.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IM	Automatic circuit breakers
SL	Unit silencement
RFM	Cooling circuit shut-off valve on discharge line
RFL	Cooling circuit shut-off valve on liquid line
CT	Condensing control down to 0 °C
CC	Condensing control down to -20 °C
ECA	EC Inverter fans on condensing section
TXC	Condensing coil with pre-coated fins
TXE	Evaporating coil with pre-coated fins
FT/M	Soft bag filters efficiency M6-F7-F8

FT/R FT/E	Rigid bag filters efficiency M6-F7-F8 Electrostatic filters
AT	Constant air flow regulation control
AT/P	Constant available static pressure regulation control
WS2	Hot water coil with 3-Way valve
EHG	Electrical heater with step regulation
SQ	Air quality sensor
SSA	Active sanitation systems
PF	Filter differential pressure switch
IS	Modbus RTU protocol, RS485 serial interface
IST	Modbus TCP/IP protocol, Ethernet port

3	ISB	BACnet MSTP protocol, RS485 serial interface
	ISBT ISL	BACnetTCP/IP protocol, Ethernet port LonWorks protocol, FTT-10 serial interface
n	ISS CP RP	SNMP protocol, Ethernet port Potential free contacts Coils protection metallic guards
ı	LOOSI	E ACCESSORIES:

MN High and low pressure gauges CR Remote control panel AG Rubber shock absorbers

TECHNICAL DATA - URT/EC/MS 051÷212 S/K kW 65.8 87.4 113 145 198 Cooling capacity (1) 57.9 77.6 98.6 129 168 252 Cooling 26.2 30.8 37.8 40.4 43.3 54.6 61.5 85.1 Absorbed power (1),(2) kW 19.4 21.8 24.6 Cooling SEER (3) 3.65 3.68 3.86 3.82 3.90 3.84 3.71 3.81 3.88 3.76 3.78 (EN14511) Energy Efficiency (3) % 143 144 151 150 153 151 149 152 147 145 148 Heating capacity (4) kW 60.2 67.2 76.8 88.6 101 115 133 151 173 204 262 Heating Absorbed power (2),(4) kW 16.8 17.9 20.2 22.8 25.2 32.2 34.0 40.0 45.7 50.4 70.5 SCOP (5) Heating 3.22 3.23 3.31 3.31 3.26 3.23 3.20 3.29 3.33 3.32 3.24 (EN14511) % Energy Efficiency (5) 126 126 129 129 127 126 125 129 130 130 127 4.05 4.05 9.79 Air flow m³/s 2.67 3.30 4.84 5.49 6.32 6.32 8.20 12.31 Air treatment Available static pressure Pa 250 250 250 250 250 250 250 250 250 250 250 section 2 2 2 2 2 2 2 Fan 'n 4 4 1 (EC version) Tipo Filter G4 Compressor 2 2 2 2 2 3 3 3 4 4 4 n' Condensing 2 Refrigerant circuits n° 1 1 1 1 1 2 2 section Capacity steps 3 4 kW 85 100 125 125 150 175 200 200 250 300 350 Heating capacity (6) Air pressure drops Pa 30 31 31 31 31 30 36 36 35 35 57 2.03 2.39 2.99 2.99 4.78 5.97 7.17 8.36 Hot water coil Water flow (6) I/s 3.58 4.18 4.78 Water pressure drops kPa 45 47 48 48 49 44 51 51 53 57 45 Water connections "G 1"1/2 1"½ 1″½ 1″½ 1"1/2 2" 2 2 2" 2 ½ 2 1/2 Power supply V/Ph/Hz 400/3/50 400/3/50 41 Heating capacity kW 15 21 27 27 27 41 41 48 55 Electrical heater 39 59 59 59 79 Max. absorbed current 22 30 39 39 59 69 Α Steps n° 2 2 2 2 2 4 4 4 4 4 4 V/Ph/Hz 400/3/50 400/3/50 Power supply Electrical characteristics Max. running current 46 47 56 60 69 88 93 102 126 148 170 Α (EC version) Max. starting current Α 169 169 179 192 236 212 225 269 258 315 344 Sound pressure EC version (7) dB(A) 57 57 57 57 57 58 59 59 60 60 61 Weights Transport weight Kg 1070 1135 1245 1340 1360 1560 1940 1990 2300 2520 3465

COMPLEMENTARY SECTIONS

Operating weight

UM Section with preparation for Humidifier

UM/EN Section Humidifier with electrodes immersed

F/CD Condensation endothermic hot air generator with modulating gas burner

Kg

1055

1120

1225

1320

1340

1540

1920

1970

2280

2500

3435

MIXING BOX

(EC version)

MS. Further to components of the basic section, includes two wing profile aluminium dampers with spring return servomotors; the opposite movement is ensured by transmission of nylon gear.

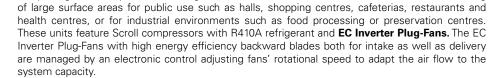
DIMENSIONS

MODEL			051	061	071	081	091	101	111	131	152	172	212
L	EC	mm	3430	3530	3640	3640	3740	4220	4950	4950	5600	5750	7850
W	EC	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	EC	mm	2100	2340	2340	2340	2340	2340	2340	2340	2340	2510	2510

CLEARANCE AREA

URT/EC/MS 051÷101 S/K 800 1700 800 1700 URT/EC/MS 111÷212 S/K 1000 1700 1000 1700

- 1. Evaporator inlet air temperature 27 °C d.b./19 °C w.b.; ambient air temperature 35 °C.
- 2. Excluded the power absorbed by fans of air treatment section
- Seasonal energy efficiency of cooling. According to EU Regulation n. 2016/2281.
 Condenser inlet air temperature 20 °C, ambient air temperature 7 °C d.b./6 °C w.b.
- Condense linet all temperature 20°C, ambient all temperature 7°C d.b./o
 Seasonal energy efficiency of heating with average climatic conditions. According to EU Regulation n. 2016/2281.
- 6. Inlet air temperature 20 °C, water temperature 70/60 °C.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of WP versions are specified on technical brochure.



URT/EC/ECO 051÷212 S/K

DOUBLE SKIN PACKAGED ROOF TOP UNITS WITH SCROLL COMPRESSORS, EC INVERTER PLUG-FANS AND ECONOMIZER.

Equipped with extruded aluminium alloy sections and 50mm-thick sandwich panelling, these units are available in Cooling only and Reversible Heat Pump version.

The packaged Roof Top air conditioning units of the AIRMAXI series are ideal for the air conditioning

The flat or pocket filters help to keep the air quality at a suitable level in order to guarantee appropriate hygiene standards.

The ECO units have an high level of modularity and adaptability to every plant-engineering need: these units feature, in addition to the basic sections, an **ECONOMIZER** automatically controlled both in FREE-COOLING or FREE-HEATING.

The unit can be equipped, as an option, with the innovative **Thermodynamic Coil-Boost Heat Recovery** to achieve better performance and efficiency both in cooling and heating up to 15%.

FROM 58 KW TO 252 KW.

The units are compliant to the ErP Regulation.

VERSION

URT/EC/ECO

Cooling only with EC Inverter Plug-Fans and Economizer

URT/EC/WP/ECO

Reversible Heat Pump with EC Inverter Plug-Fans and Economizer

FEATURES

- Structure of base perimeter made of steel sheet elements galvanised. Frame made of extruded aluminium alloy profiles connected by 3 way joints. Assembling of the base to the frame is of dual support and grants the walking on the base panels installation without sticking out screws. 50mm thick sandwich panels made of prepainted steel sheet; water proofing granted by gaskets having shape memory for perfect seal up even after repeated removals. Section connection is effected by means of assembling conic stirrups and water proofing is granted by gaskets.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Condenser and evaporator with copper tube and aluminium finned coil.
- High efficiency delivery & intake reverse blade EC INVERTER PLUG-FANS, with electronic speed control to easily adapt to the system characteristics.
- R410A refrigerant.
- Electrical board includes: door interlocking isolator, fuses, thermal protection relays on compressors, thermocontacts for the fans of the condensing section and contactors for the fan motors of the air handling section.
- Microprocessor for the automatic control of the unit.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

Automatic circuit breakers

SL	Unit silencement
THCB	Thermodynamic Coil-Boost Heat
	Recovery (ECO only)
RFM	Cooling circuit shut-off valve on
	discharge line
RFL	Cooling circuit shut-off valve on
	liquid line
CT	Condensing control down to 0 °C
CC	Condensing control down to -20 °C
ECA	EC Inverter fans on condensing section
TXC	Condensing coil with pre-coated fins
TXE	Evaporating coil with pre-coated fins
FT/M	Soft bag filters efficiency M6-F7-F8

FT/R	Rigid bag filters efficiency M6-F7-F8
FT/E	Electrostatic filters
AT	Constant air flow regulation control
AT/P	Constant available static pressure
	regulation control
WS2	Hot water coil with 3-Way valve
EHG	Electrical heater with step regulation
CH	Enthalpic control (ECO only)
SQ	Air quality sensor
SSA	Active sanitation systems
PF	Filter differential pressure switch
IS	Modbus RTU protocol, RS485 serial
	interface
IST	Modbus TCP/IP protocol, Ethernet por
ISB	BACnet MSTP protocol, RS485 serial

ISBT ISL	BACnet TCP/IP protocol, Ethernet port LonWorks protocol, FTT-10 serial interface			
ISS CP RP	SNMP protocol, Ethernet port Potential free contacts Coils protection metallic guards			
LOOSE ACCESSORIES:				

MN High and low pressure gauges CR Remote control panel AG Rubber shock absorbers

IM

TECHNICAL DATA - URT/EC/ECO 051÷212 S/K Cooling capacity (1) kW 57.9 65.8 77.6 87.4 98.6 113 129 145 168 198 252 Cooling Absorbed power (1),(2) kW 19.4 21.8 24.6 26.2 30.8 37.8 40.4 43.3 54.6 61.5 85.1 3.88 Cooling SEER (3) 3.65 3.68 3.86 3.82 3.90 3.84 3.71 3.81 3.76 3.78 Energy Efficiency (3) (EN14511) 143 144 151 153 151 145 149 152 147 148 150 Heating capacity (4) kW 60.2 67.2 76.8 88.6 101 115 133 151 173 204 262 Heating Absorbed power (2),(4) kW 16.8 17.9 20.2 25.2 32.2 34.0 40.0 45.7 50.4 Heating SCOP (5) 3.22 3.23 3.31 3.31 3.26 3.23 3.20 3.29 3.33 3.32 3.24 (EN14511) Energy Efficiency (5) % 126 129 130 126 129 126 125 129 130 127 m³/s 4.05 4.84 6.32 6.32 9.79 12.31 Air flow 2.67 3.30 4.05 5.49 8.20 Air treatment Available static pressure Pa 250 250 250 250 250 250 250 250 250 250 250 section Fan n' (EC version) Filter G4 Tipo 2.67 4.05 4.05 4.84 8.20 9.79 Air flow m³/s 3.30 5.49 6.32 6.32 12.31 Air intake section Available static pressure Pa 100 100 100 100 100 100 100 100 100 100 100 (EC version) Fan 'n 2 2 4 4 4 Compressor n' 4 4 Condensing Refrigerant circuits n' section 4 Capacity steps n' Heating capacity (6) kW 85 100 125 125 150 175 200 200 250 300 350 Air pressure drops Pa 30 31 30 36 31 31 31 36 35 4.78 Water flow (6) I/s 2.03 2.39 2.99 2.99 3.58 4.18 4.78 5.97 7.17 8.36 Hot water coil kPa 57 Water pressure drops 45 47 48 48 49 44 51 51 53 45 1"1/2 1"1/2 1"1/2 1"½ 1"1/2 2 ½ 2 ½ Water connections "G V/Ph/Hz Power supply 400/3/50 400/3/50 27 27 55 15 41 41 41 Heating capacity kW 2 41 48 Electrical heater 39 30 39 39 59 59 22 59 59 69 79 Max. absorbed current Α 2 2 2 2 4 4 4 Steps n° 2 4 4 4 Electrical Power supply V/Ph/Hz 400/3/50 400/3/50 170 46 47 69 88 93 102 148 characteristics Max. running current 56 60 126 (EC version) Max. starting current Δ 169 169 179 192 236 212 225 269 258 315 344 Sound pressure EC version (7) dB(A) 57 57 57 57 57 58 59 59 60 60 61

COMPLEMENTARY SECTIONS

Transport weight

Operating weight

UM Section with preparation for Humidifier
UM/EN Section Humidifier with electrodes immersed

F/CD Condensation endothermic hot air generator with modulating gas burner

Kg

1500

1480

1610

1590

1740

1720

1840

1820

1860

1840

2000

1975

2400

2375

2450

2425

3020

2990

3370

3335

4190

4150

ECONOMIZER

Weights

(EC version)

ECO. Further to components of the basic section, includes: return air fan with electrical motor, complete of adjustable transmission, mounted on elastic supports; motorized wing profile aluminium dampers, the opposite movement is ensured by transmission of nylon gear. Exhaust, recirculation and fresh air are controlled through the microprocessor fitted in the base unit; this microprocessor, according to the temperature of the return and fresh air, modulates the opening of the dampers and controls the cooling circuit capacity steps to ensure comfort conditions of the handled air. The adjustments of the ECO versions are automatically controlled both in free-cooling and free-heating mode.

DIMENSIONS

MODEL			051	061	071	081	091	101	111	131	152	172	212
L	EC	mm	5260	5480	5570	5570	5650	6170	6900	6900	8080	8470	11020
W	EC	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	EC	mm	2100	2340	2340	2340	2340	2340	2340	2340	2340	2510	2510

CLEARANCE AREA

URT/EC/ECO 051÷101 S/K 800 1700 800 1700 URT/EC/ECO 111 ÷ 212 S/K

- 1. Evaporator inlet air temperature 27 °C d.b./19 °C w.b.; ambient air temperature 35 °C.
- 2. Excluded the power absorbed by fans of air treatment section
- Seasonal energy efficiency of cooling. According to EU Regulation n. 2016/2281.
 Condenser inlet air temperature 20 °C, ambient air temperature 7 °C d.b./6 °C w.b.
- Condense filler air temperature 20°C, a fillowing air temperature 7°C d.b./o
 Seasonal energy efficiency of heating with average climatic conditions. According to EU Regulation n. 2016/2281.
- 6. Inlet air temperature 20 °C, water temperature 70/60 °C.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of WP versions are specified on technical brochure.

URT/EC/ECO/REC-FX 051÷212 S/K

DOUBLE SKIN PACKAGED ROOF TOP UNITS WITH SCROLL COMPRESSORS, EC INVERTER PLUG-FANS, ECONOMIZER AND CROSS-FLOW HEAT RECOVERY.

The packaged Roof Top air conditioning units of the **AIRMAXI** series are ideal for the air conditioning of large surface areas for public use such as halls, shopping centres, cafeterias, restaurants and health centres, or for industrial environments such as food processing or preservation centres. These units feature Scroll compressors with R410A refrigerant and **EC Inverter Plug-Fans**. The EC Inverter Plug-Fans with high energy efficiency backward blades both for intake as well as delivery are managed by an electronic control adjusting fans' rotational speed to adapt the air flow to the system capacity.

Equipped with extruded aluminium alloy sections and 50mm-thick sandwich panelling, these units are available in Cooling only and Reversible Heat Pump version.

The flat or pocket filters help to keep the air quality at a suitable level in order to guarantee appropriate hygiene standards.

The ECO/REC-FX units have an high level of modularity and adaptability to every plant-engineering need: these units feature, in addition to the basic sections, an **ECONOMIZER** automatically controlled both in FREE-COOLING or FREE-HEATING and a **CROSS-FLOW HEAT RECOVERY**.

The units are compliant to the ErP Regulation.

CAIRMAXI

FROM 58 KW TO 252 KW.

VERSION

URT/EC/ECO/REC-FX

Cooling only with EC Inverter Plug-Fans, Economizer and Cross-flow Heat Recovery

URT/EC/WP/ECO/REC-FX

Reversible Heat Pump with EC Inverter Plug-Fans, Economizer and Cross-flow Heat Recovery

FEATURES

- Structure of base perimeter made of steel sheet elements galvanised. Frame made of extruded aluminium alloy profiles connected by 3 way joints. Assembling of the base to the frame is of dual support and grants the walking on the base panels installation without sticking out screws.
 50mm thick sandwich panels made of prepainted steel sheet; water proofing granted by gaskets having shape memory for perfect seal up even after repeated removals. Section connection is effected by means of assembling conic stirrups and water proofing is granted by gaskets.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Condenser and evaporator with copper tube and aluminium finned coil.
- High efficiency delivery & intake reverse blade EC INVERTER PLUG-FANS, with electronic speed control to easily adapt to the system characteristics.
- R410A refrigerant.
- Electrical board includes: door interlocking isolator, fuses, thermal protection relays on compressors, thermocontacts for the fans of the condensing section and contactors for the fan motors of the air handling section.
- Microprocessor for the automatic control of the unit.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

IIVI	Automatic circuit preakers
SL	Unit silencement
RFM	Cooling circuit shut-off valve on discharge line
RFL	Cooling circuit shut-off valve on liquid line
CT	Condensing control down to 0 °C
CC	Condensing control down to -20 °C
ECA	EC Inverter fans on condensing section
TXC	Condensing coil with pre-coated fins
TXE	Evaporating coil with pre-coated fins
FT/M	Soft bag filters efficiency M6-F7-F8

FT/R FT/E	Rigid bag filters efficiency M6-F7-F8 Electrostatic filters
AT	Constant air flow regulation control
AT/P	Constant available static pressure regulation control
WS2	Hot water coil with 3-Way valve
EHG	Electrical heater with step regulation
CH	Enthalpic control (ECO only)
SQ	Air quality sensor
SSA	Active sanitation systems
PF	Filter differential pressure switch
IS	Modbus RTU protocol, RS485 serial interface
IST	${\sf ModbusTCP/IPprotocol,Ethernetport}$

ISB	BACnet MSTP protocol, RS485 serial interface
ISBT ISL	BACnet TCP/IP protocol, Ethernet port LonWorks protocol, FTT-10 serial interface
ISS CP RP	SNMP protocol, Ethernet port Potential free contacts Coils protection metallic guards
1000	E ACCESSORIES.

OOSE ACCESSORIES:

MN	High and low pressure gauges
CR	Remote control panel
AG	Rubber shock absorbers

TECHNICAL DATA - URT/EC/ECO/REC-EX 051÷212 S/K

			ILLC	1 / 0	7172	12 0/1	`							
MODEL			051	061	071	081	091	101	111	131	152	172	212	
Cooling	Cooling capacity (1)	kW	57.9	65.8	77.6	87.4	98.6	113	129	145	168	198	252	
Cooling	Absorbed power (1),(2)	kW	19.4	21.8	24.6	26.2	30.8	37.8	40.4	43.3	54.6	61.5	85.1	
Cooling	SEER (3)		3.65	3.68	3.86	3.82	3.90	3.84	3.71	3.81	3.88	3.76	3.78	
(EN14511)	Energy Efficiency (3)	%	143	144	151	150	153	151	145	149	152	147	148	
Llastina	Heating capacity (4)	kW	60.2	67.2	76.8	88.6	101	115	133	151	173	204	262	
Heating	Absorbed power (2),(4)	kW	16.8	17.9	20.2	22.8	25.2	32.2	34.0	40.0	45.7	50.4	70.5	
Heating	SCOP (5)		3.22	3.23	3.31	3.31	3.26	3.23	3.20	3.29	3.33	3.32	3.24	
(EN14511)	Energy Efficiency (5)	%	126	126	129	129	127	126	125	129	130	130	127	
Air traatmaant	Air flow	m³/s	2.67	3.30	4.05	4.05	4.84	5.49	6.32	6.32	8.20	9.79	12.31	
Air treatment	Available static pressure	Pa	250	250	250	250	250	250	250	250	250	250	250	
section	Fan	n°	1	1	2	2	2	2	2	2	2	4	4	
(EC version)	Filter	Tipo	G4	G4	G4	G4	G4	G4	G4	G4	G4	G4	G4	
Air intake section (EC version)	Air flow	m³/s	2.67	3.30	4.05	4.05	4.84	5.49	6.32	6.32	8.20	9.79	12.31	
	Available static pressure	Pa	100	100	100	100	100	100	100	100	100	100	100	
	Fan	n°	1	1	2	2	2	2	2	2	2	4	4	
Condensing	Compressor	n°	2	2	2	2	2	3	3	3	4	4	4	
	Refrigerant circuits	n°	1	1	1	1	1	1	1	1	2	2	2	
section	Capacity steps	n°	2 3						;	3		4		
	Heating capacity (6)	kW	85	100	125	125	150	175	200	200	250	300	350	
	Air pressure drops	Pa	30	31	31	31	31	30	36	36	35	35	57	
Hot water coil	Water flow (6)	I/s	2.03	2.39	2.99	2.99	3.58	4.18	4.78	4.78	5.97	7.17	8.36	
	Water pressure drops	kPa	45	47	48	48	49	44	51	51	53	57	45	
	Water connections	"G	1"1/2	1"1/2	1"1/2	1"1/2	1"1/2	2"	2"	2"	2"	2 ½"	2 ½"	
	Power supply	V/Ph/Hz	400/3/50							400/3/50				
Electrical heater	Heating capacity	kW	15	21	27	27	27	41	41	41	41	48	55	
Electrical neater	Max. absorbed current	Α	22	30	39	39	39	59	59	59	59	69	79	
	Steps	n°	2	2	2	2	2	4	4	4	4	4	4	
Electrical	Power supply	V/Ph/Hz	400/3/50							400/3/50				
characteristics	Max. running current	А	46	47	56	60	69	88	93	102	126	148	170	
(EC version)	Max. starting current	А	169	169	179	192	236	212	225	269	258	315	344	
Sound pressure	EC version (7)	dB(A)	57	57	57	57	57	58	59	59	60	60	61	
Weights	Transport weight	Kg	1645	1720	1910	2020	2040	2210	2640	2690	3260	3590	4390	
(EC version)	Operating weight	Kg	1620	1695	1885	1995	2015	2185	2610	2660	3225	3555	4350	

COMPLEMENTARY SECTIONS

Section with preparation for Humidifier UM UM/EN Section Humidifier with electrodes immersed

F/CD Condensation endothermic hot air generator with modulating gas burner

ECONOMIZER AND CROSS-FLOW HEAT RECOVERY

ECO/REC-FX. Further to the components of the ECO section, it includes: static recovery device made of aluminium with moisture drain pan, flat filters inspectable through hinged door and dampers with return spring servomotors (fresh air damper + air recirculation damper + exhaust air damper + 2 Free-Cooling dampers). Also the adjustment of this section is included into the unit control.

DIMENSIONS

MODEL			051	061	071	081	091	101	111	131	152	172	212
L	EC	mm	6060	6060	6270	6270	6450	7050	7870	7870	9120	9380	11650
W	EC	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	EC	mm	2100	2340	2340	2340	2340	2340	2340	2340	2340	2510	2510

CLEARANCE AREA

URT/EC/ECO/REC-FX 051÷101 S/K URT/EC/ECO/REC-FX 111÷212 S/K 800 1700 800 1700 1000 1700 1000 1700

- Evaporator inlet air temperature 27 °C d.b./19 °C w.b.; ambient air temperature 35 °C.
- Excluded the power absorbed by fans of air treatment section.
- 3. Seasonal energy efficiency of cooling. According to EU Regulation n. 2016/2281.
- Condenser inlet air temperature 20 °C, ambient air temperature 7 °C d.b./6 °C w.b. Seasonal energy efficiency of heating with average climatic conditions. 4
- 5. According to EU Regulation n. 2016/2281.
- Inlet air temperature 20 °C, water temperature 70/60 °C. 6.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of WP versions are specified on technical brochure.

URT/EC/ECO/REC-WH 051÷212 S/K

DOUBLE SKIN PACKAGED ROOF TOP UNITS WITH SCROLL COMPRESSORS, EC INVERTER PLUG-FANS, ECONOMIZER AND WHEEL HEAT RECOVERY.

The packaged Roof Top air conditioning units of the AIRMAXI series are ideal for the air conditioning of large surface areas for public use such as halls, shopping centres, cafeterias, restaurants and health centres, or for industrial environments such as food processing or preservation centres. These units feature Scroll compressors with R410A refrigerant and EC Inverter Plug-Fans. The EC Inverter Plug-Fans with high energy efficiency backward blades both for intake as well as delivery are managed by an electronic control adjusting fans' rotational speed to adapt the air flow to the system capacity.

Equipped with extruded aluminium alloy sections and 50mm-thick sandwich panelling, these units are available in Cooling only and Reversible Heat Pump version.

The flat or pocket filters help to keep the air quality at a suitable level in order to guarantee appropriate hygiene standards.

The ECO/REC-WH units have an high level of modularity and adaptability to every plant-engineering need: these units feature, in addition to the basic sections, an ECONOMIZER automatically controlled both in FREE-COOLING or FREE-HEATING and a WHEEL HEAT RECOVERY, able to treat up to 100% of total air flow.

The units are compliant to the ErP Regulation.

FROM 58 KW TO 252 KW.

VERSION

URT/EC/ECO/REC-WH

Cooling only with EC Inverter Plug-Fans, Economizer and Wheel Heat Recovery

URT/EC/WP/ECO/REC-WH

Reversible Heat Pump with EC Inverter Plug-Fans, Economizer and Wheel Heat Recovery

FEATURES

- Structure of base perimeter made of steel sheet elements galvanised. Frame made of extruded aluminium alloy profiles connected by 3 way joints. Assembling of the base to the frame is of dual support and grants the walking on the base panels installation without sticking out screws. 50mm thick sandwich panels made of prepainted steel sheet; water proofing granted by gaskets having shape memory for perfect seal up even after repeated removals. Section connection is effected by means of assembling conic stirrups and water proofing is granted by gaskets.
- Scroll compressors with oil sight glass, internal overheat protection and crankcase heater.
- Condenser and evaporator with copper tube and aluminium finned coil.
- High efficiency delivery & intake reverse blade EC INVERTER PLUG-FANS, with electronic speed control to easily adapt to the system characteristics.
- Electronic expansion valve.
- R410A refrigerant.
- Electrical board includes: door interlocking isolator, fuses, thermal protection relays on compressors, thermocontacts for the fans of the condensing section and contactors for the fan motors of the air handling section.
- Microprocessor for the automatic control of the unit.

ACCESSORIES

FACTORY FITTED ACCESSORIES:

Automatic circuit breakers SL Unit silencement RFM Cooling circuit shut-off valve on discharge line **RFL** Cooling circuit shut-off valve on liquid line CT Condensing control down to 0 °C CC Condensing control down to -20 °C FCA EC Inverter fans on condensing section

TXC Condensing coil with pre-coated fins TXE Evaporating coil with pre-coated fins FT/M Soft bag filters efficiency M6-F7-F8

FT/R Rigid bag filters efficiency M6-F7-F8

FT/E Electrostatic filters ΑТ Constant air flow regulation control AT/P Constant available static pressure regulation control WS2 Hot water coil with 3-Way valve Electrical heater with step regulation EHG Enthalpic control (ECO only) CH

Air quality sensor SQ SSA Active sanitation systems ΡF

Filter differential pressure switch IS Modbus RTU protocol, RS485 serial interface

IST Modbus TCP/IP protocol, Ethernet port BACnet MSTP protocol, RS485 serial interface

ISBT BACnet TCP/IP protocol, Ethernet port LonWorks protocol, FTT-10 serial **ISL**

interface

ISS SNMP protocol, Ethernet port CP Potential free contacts

RP Coils protection metallic guards

LOOSE ACCESSORIES:

MN High and low pressure gauges CR Remote control panel AG Rubber shock absorbers

IM

TECHNICAL DATA - URT/EC/ECO/REC-WH 051÷212 S/K

			ILLO	VVII (JU 1 . 2	. 12 0	/ I \							
MODEL			051	061	071	081	091	101	111	131	152	172	212	
Cooling	Cooling capacity (1)	kW	57.9	65.8	77.6	87.4	98.6	113	129	145	168	198	252	
Cooling	Absorbed power (1),(2)	kW	19.4	21.8	24.6	26.2	30.8	37.8	40.4	43.3	54.6	61.5	85.1	
Cooling	SEER (3)		3.65	3.68	3.86	3.82	3.90	3.84	3.71	3.81	3.88	3.76	3.78	
(EN14511)	Energy Efficiency (3)	%	143	144	151	150	153	151	145	149	152	147	148	
Llastina	Heating capacity (4)	kW	60.2	67.2	76.8	88.6	101	115	133	151	173	204	262	
Heating	Absorbed power (2),(4)	kW	16.8	17.9	20.2	22.8	25.2	32.2	34.0	40.0	45.7	50.4	70.5	
Heating	SCOP (5)		3.22	3.23	3.31	3.31	3.26	3.23	3.20	3.29	3.33	3.32	3.24	
(EN14511)	Energy Efficiency (5)	%	126	126	129	129	127	126	125	129	130	130	127	
A:- + +	Air flow	m³/s	2.67	3.30	4.05	4.05	4.84	5.49	6.32	6.32	8.20	9.79	12.31	
Air treatment	Available static pressure	Pa	250	250	250	250	250	250	250	250	250	250	250	
section	Fan	n°	1	1	2	2	2	2	2	2	2	4	4	
(EC version)	Filter	Tipo	G4	G4	G4	G4	G4	G4	G4	G4	G4	G4	G4	
Air intake section (EC version)	Air flow	m³/s	2.67	3.30	4.05	4.05	4.84	5.49	6.32	6.32	8.20	9.79	12.31	
	Available static pressure	Pa	100	100	100	100	100	100	100	100	100	100	100	
	Fan	n°	1	1	2	2	2	2	2	2	2	4	4	
Condensing	Air flow	m³/s	6.9	7.1	6.9	6.7	6.7	9.8	14.0	13.9	13.9	13.4	20.0	
	Compressor	n°	2	2	2	2	2	3	3	3	4	4	4	
section	Refrigerant circuits	n°	1	1	1	1	1	1	1	1	2	2	2	
	Capacity steps	n°	2 3					3	;	3		4		
	Heating capacity (6)	kW	85	100	125	125	150	175	200	200	250	300	350	
	Air pressure drops	Pa	30	31	31	31	31	30	36	36	35	35	57	
Hot water coil	Water flow (6)	I/s	2.03	2.39	2.99	2.99	3.58	4.18	4.78	4.78	5.97	7.17	8.36	
	Water pressure drops	kPa	45	47	48	48	49	44	51	51	53	57	45	
	Water connections	"G	1"1/2	1"1/2	1"1/2	1"1/2	1"1/2	2"	2"	2"	2"	2 ½"	2 ½"	
	Power supply	V/Ph/Hz	400/3/50							400/3/50				
Electrical bases	Heating capacity	kW	15	21	27	27	27	41	41	41	41	48	55	
Electrical heater	Max. absorbed current	Α	22	30	39	39	39	59	59	59	59	69	79	
	Steps	n°	2	2	2	2	2	4	4	4	4	4	4	
Electrical	Power supply	V/Ph/Hz			400,	3/50			400/3/50					
characteristics	Max. running current	Α	46	47	56	60	69	88	93	102	126	148	170	
(EC version)	Max. starting current	Α	169	169	179	192	236	212	225	269	258	315	344	
Sound pressure	EC version (7)	dB(A)	57	57	57	57	57	58	59	59	60	60	61	
Weights	Transport weight	Kg	1645	1720	1910	2020	2040	2210	2640	2690	3260	3590	4390	
(EC version)	Operating weight	Kg	1620	1695	1885	1995	2015	2185	2610	2660	3225	3555	4350	

COMPLEMENTARY SECTIONS

UM Section with preparation for Humidifier

UM/EN Section Humidifier with electrodes immersed

F/CD Condensation endothermic hot air generator with modulating gas burner

ECONOMIZER AND WHEEL HEAT RECOVERY

ECO/REC-WH. Further to the components of the ECO section, includes: high efficiency wheel-type heat recovery device made of aluminium with hygroscopic treatment, managed by a constant-speed electric motor, with moisture drain pan and dampers with spring return (fresh air damper + air recirculation damper + exhaust air damper). Also the adjustment of this section is included into the unit control.

DIMENSIONS

MODEL			051	061	071	081	091	101	111	131	152	172	212
L	EC	mm	6060	6060	6270	6270	6450	7050	7870	7870	9120	9380	11650
W	EC	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Н	EC	mm	2100	2340	2340	2340	2340	2340	2340	2340	2340	2510	2510

CLEARANCE AREA

URT/EC/ECO/REC-WH 051÷101 S/K URT/EC/ECO/REC-WH 111÷212 S/K 800 | 1700 | 800 | 1700 | 1000 | 1700 | 1000 | 1700

- 1. Evaporator inlet air temperature 27 °C d.b./19 °C w.b.; ambient air temperature 35 °C.
 - 2. Excluded the power absorbed by fans of air treatment section.
- Seasonal energy efficiency of cooling. According to EU Regulation n. 2016/2281.
 Condenser inlet air temperature 20 °C, ambient air temperature 7 °C d.b./6 °C w.b.
- Contense fine all temperature 20°C, ambient all temperature 7°C d.b./o
 Seasonal energy efficiency of heating with average climatic conditions. According to EU Regulation n. 2016/2281.
- 6. Inlet air temperature 20 °C, water temperature 70/60 °C.
- Sound pressure level measured in free field conditions at 1 m from the unit. According to ISO 3744.
- N.B. Weights of WP versions are specified on technical brochure.

G.I. INDUSTRIAL HOLDING SPA

Via Max Piccini, 11/13 • 33061 RIVIGNANO TEOR • ITALY Tel. +39 0432 823011 • Fax +39 0432 773855 www.ktk.it • e-mail: info@ktk.it

A Company of:

Sales Offices:

Europe:

Via G. Ambrosio, 4 33053 LATISANA • ITALY Tel. +39 0431 1967011 • Fax +39 0431 1967060 www.gind.it • e-mail: info@gind.it

Russia and other C.I.S. Countries:

REGUS AVION Business Center Leningradskiy Prospect, 47/2 125167 MOSCOW • RUSSIAN FEDERATION Tel. +7 495 139 46 39 • Fax. +7 495 139 46 39 www.gind.it • e-mail: info@gind.com.ru

Production Plants:

G.I. INDUSTRIAL HOLDING SpA Via Max Piccini, 11/13 33061 RIVIGNANO TEOR • ITALY

G.I. INDUSTRIAL HOLDING SpA Via G. Ambrosio, 4 33053 LATISANA • ITALY

G.I. INDUSTRIAL HOLDING SpA Via J. Keplero, 27 35028 PIOVE DI SACCO • ITALY

GIMEK Zrt Rozália Park, 11 H-2051 BIATORBÁGY • HUNGARY www.gimek.hu

04.2021

G.I. INDUSTRIAL HOLDING S.p.A. is not responsible for possible errors of this catalogue and can change, without